分析 (1)运用递推关系得出*,an+1=$\frac{3}{2}$(an+1-an),n∈N*,即$\frac{{a}_{n+1}}{{a}_{n}}$=3,a1=3,结合等比数列定义判断即可.
(2)分类判断32n+1∈{bn}.32n∉{bn}.根据集合运算判断数列{an}={a2n}∪{a2n+1},得出dn=32n+1.(n∈N*);
(3)运用递推关系式得出Br=$\frac{r(7+4r+3)}{2}$=r(2r+5)=$\frac{{3}^{2n+1}-3}{4}•\frac{{3}^{2n+1}+7}{2}$,Dn=$\frac{27}{1-9}$•(1-9n)=$\frac{27}{8}$(9n-1),作差判断化简Tn=Br-Dn=$\frac{{9}^{2n+1}+4•{3}^{2n+1}-21}{8}$-$\frac{27}{8}$(9n-1)=$\frac{9}{8}$•34n$-\frac{11}{8}$•32n+$\frac{3}{4}$(an)4=34n,即可求解.
解答 解:(1)由An=$\frac{3}{2}$(an -1)(n∈N*),可知An+1=$\frac{3}{2}$(an+1 -1)(n∈N*),
∴An+1-An=$\frac{3}{2}$(an+1-an),n∈N*,an+1=$\frac{3}{2}$(an+1-an),n∈N*,
即$\frac{{a}_{n+1}}{{a}_{n}}$=3,a1=3,
∴{an}为首项为3,公比为3的等比数列
∴an=3n.
(2)∵32n+1=3•32n=3(4-1)2n=3[42n${-C}_{2n}^{1}$•42n-1+…+${C}_{2n}^{2n-1}$•4•(-1)2n-1+(-1)2n]=4m+3.
∴32n+1∈{bn}.
而数32n=(4-1)2n=[42n${-C}_{2n}^{1}$•42n-1+…+${C}_{2n}^{2n-1}$•4•(-1)2n-1+(-1)2n]=4k+1,
∴32n∉{bn}.
而数列{an}={a2n}∪{a2n+1},
∴dn=32n+1.(n∈N*);
(3)由32n+1=4r+3,r=$\frac{{3}^{2n+1}-3}{4}$,
∴Br=$\frac{r(7+4r+3)}{2}$=r(2r+5)=$\frac{{3}^{2n+1}-3}{4}•\frac{{3}^{2n+1}+7}{2}$,Dn=$\frac{27}{1-9}$•(1-9n)=$\frac{27}{8}$(9n-1),
∴Tn=Br-Dn=$\frac{{9}^{2n+1}+4•{3}^{2n+1}-21}{8}$-$\frac{27}{8}$(9n-1)=$\frac{9}{8}$•34n$-\frac{11}{8}$•32n+$\frac{3}{4}$(an)4=34n
点评 本题综合考查了等差数列等比数列的性质,分类的思想判断运用,构造思想的运用,复杂化简运算属于中档题.
科目:高中数学 来源: 题型:选择题
A. | 10 | B. | 9 | C. | 8 | D. | 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{5}{2}$ | B. | $1+\frac{{\sqrt{3}}}{2}$ | C. | $\frac{3}{2}$ | D. | $1-\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 锐角三角形 | B. | 钝角三角形 | C. | 直角三角形 | D. | 等腰三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com