已知函数,,其中为常数, ,函数的图象与坐标轴交点处的切线为,函数的图象与直线交点处的切线为,且。
(Ⅰ)若对任意的,不等式成立,求实数的取值范围.
(Ⅱ)对于函数和公共定义域内的任意实数。我们把 的值称为两函数在处的偏差。求证:函数和在其公共定义域的所有偏差都大于2.
(Ⅰ);(Ⅱ)详见解析.
【解析】
试题分析:(Ⅰ)利用参数分离法将不等式问题转化为,等价转化为处理,于是问题的核心就是求函数,利用导数求解,但同时需要注意题中的隐含条件将的值确定下来;(Ⅱ)先确定函数与函数的解析式,然后引入函数,通过证明,进而得到
,得到,于是就说明原结论成立.
试题解析:解(Ⅰ)函数的图象与坐标轴的交点为,
又
函数的图象与直线的交点为,
又
由题意可知,
又,所以 3分
不等式可化为
即
令,则,
又时,,,
故,在上是减函数
即在上是减函数
因此,在对任意的,不等式成立,
只需
所以实数的取值范围是 8分
(Ⅱ)证明:和的公共定义域为,由(Ⅰ)可知,
令,则,
在上是增函数
故,即 ①
令,则,
当时,;当时,,
有最大值,因此 ②
由①②得,即
又由①得
由②得
故函数和在其公共定义域的所有偏差都大于2 13分
考点:函数图象的切线方程、参数分离法、函数不等式
科目:高中数学 来源: 题型:
1 | a-x |
查看答案和解析>>
科目:高中数学 来源: 题型:
kπ | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
f(x1)-f(x2) | x1-x2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
(09年东城区二模理)(14分)
已知函数=(其中为常数,).利用函数构造一个数列,方法如下:
对于给定的定义域中的,令,,…,,…
在上述构造过程中,如果(=1,2,3,…)在定义域中,那么构造数列的过程继续下去;如果不在定义域中,那么构造数列的过程就停止.
(Ⅰ)当且时,求数列的通项公式;
(Ⅱ)如果可以用上述方法构造出一个常数列,求的取值范围;
(Ⅲ)是否存在实数,使得取定义域中的任一实数值作为,都可用上述方法构造出一个无穷数列 ?若存在,求出的值;若不存在,请说明理由.查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com