精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,四边形为梯形, ,且 是边长为2的正三角形,顶点上的射影为点,且 .

(1)证明:平面平面

(2)求二面角的余弦值.

【答案】(1)见解析(2)

【解析】试题分析:(1) 取的中点为,连接利用直角三角形的性质,可分别求出的值,由勾股定理得.可得,可证平面平面;(2)以所在直线为轴, 所在直线为轴,过点作平面的垂线为轴,建立空间直角坐标系,写出各点坐标,求出两个半平面的法向量,利用法向量的夹角与二面角的夹角的关系,可求二面角的余弦值.

试题解析:(Ⅰ)证明:由顶点上投影为点,可知,

的中点为,连结

中, ,所以

中, ,所以

所以, ,即

,所以面

(Ⅱ)由(Ⅰ)知, ,且

所以 ,且.以所在直线为轴, 所在直线为轴,点作平面的垂线为轴,建立空间直角坐标系,如图所示:

设平面 的法向量分别为,则

,则

,则

所以二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示是一个算法程序框图,在集合中随机抽取一个数值作为输入,则输出的的值落在区间内的概率为

A. 0.8 B. 0.6 C. 0.5 D. 0.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= +x.
(1)判断并证明f(x)的奇偶性;
(2)证明:函数f(x)在区间(1,+∞)上为增函数;
(3)求函数f(x)在区间[1,3]的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=aex﹣x﹣1,a∈R.
(Ⅰ)当a=1时,求f(x)的单调区间;
(Ⅱ)当x∈(0,+∞)时,f(x)>0恒成立,求a的取值范围;
(Ⅲ)求证:当x∈(0,+∞)时,ln

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数f(x)满足f(x)= ,且f(x)=f(x+2),g(x)= ,则方程g(x)=f(x)﹣g(x)在区间[﹣3,7]上的所有零点之和为(
A.12
B.11
C.10
D.9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,点是圆上的任意一点,设为该圆的圆心,并且线段的垂直平分线与直线交于点.

(1)求点的轨迹方程;

(2)已知两点的坐标分别为 ,点是直线上的一个动点,且直线分别交(1)中点的轨迹于两点(四点互不相同),证明:直线恒过一定点,并求出该定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别是椭圆 的长轴与短轴的一个端点, 分别是椭圆的左、右焦点, 椭圆上的一点, 的周长为.

(1)求椭圆的方程;

(2)若是圆上任一点,过点作椭圆的切线,切点分别为,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且
(Ⅰ)求sinB的值;
(Ⅱ)若 ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解关于x的不等式12x2﹣ax>a2(a∈R).

查看答案和解析>>

同步练习册答案