精英家教网 > 高中数学 > 题目详情

【题目】设椭圆)的左、右焦点为,右顶点为,上顶点为.已知

1)求椭圆的离心率;

2)设为椭圆上异于其顶点的一点,以线段为直径的圆经过点,经过原点的直线与该圆相切,求直线的斜率.

【答案】1;(2)直线的斜率为

【解析】试题(1)设椭圆的右焦点的坐标为,由已知,可得,结合,可得,从而可求得椭圆的离心率;(2)在(1)的基础上,可先利用及数量积的坐标运算求出点的坐标,再求出以线段为直径的圆的方程(圆心坐标和半径),最后设经过原点的与该圆相切的直线的方程为,由圆心到切线的距离等于半径,列方程,解方程即可得求得直线的斜率.

1)设椭圆的右焦点的坐标为.由,可得,又,则椭圆的离心率

2)由(1)知,故椭圆方程为.设.由,有.由已知,有,即.又,故有

在椭圆上,故

可得.而点不是椭圆的顶点,故,代入,即点的坐标为.设圆的圆心为,则,进而圆的半径.设直线的斜率为,依题意,直线的方程为.由与圆相切,可得,即,整理得,解得直线的斜率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】将边长为的正方形沿对角线折起,使得平面平面,在折起后形成的三棱锥中,给出下列四个命题:①;②异面直线所成的角为;③二面角余弦值为;④三棱锥的体积是.其中正确命题的序号是___________.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,圆的参数方程为为参数),以直角坐标系的原点为极点,轴正半轴为极轴建立极坐标系.

(1)求圆的极坐标方程;

(2)设曲线的极坐标方程为,曲线的极坐标方程为,求三条曲线所围成图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数,),以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程是.

(1)求直线的普通方程和曲线的直角坐标方程;

(2)已知直线与曲线交于两点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某兴趣小组测量电视塔AE的高度H(单位m),如示意图,垂直放置的标杆BC高度h=4m,仰角∠ABE=α∠ADE=β

1)该小组已经测得一组αβ的值,tanα=1.24,tanβ=1.20,,请据此算出H的值

2)该小组分析若干测得的数据后,发现适当调整标杆到电视塔的距离d(单位m),使αβ之差较大,可以提高测量精确度,若电视塔实际高度为125m,问d为多少时,α-β最大

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知矩形所在平面与半圆弧所在平面垂直,是半圆弧上异于的点.

1)证明:平面平面

2)若,当三棱锥的体积最大且二面角的平面角的大小为时,试确定的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,,分别为侧棱,的中点,则四面体的体积与四棱锥的体积之比为___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为M是椭圆C的上顶点,,F2是椭圆C的焦点,的周长是6.

(Ⅰ)求椭圆C的标准方程;

(Ⅱ)过动点P(1,t)作直线交椭圆CAB两点,且|PA|=|PB|,过P作直线l,使l与直线AB垂直,证明:直线l恒过定点,并求此定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人设计一项单人游戏,规则如下:先将一棋子放在如图所示正方形(边长为2个单位)的顶点处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走了几个单位,如果掷出的点数为,则棋子就按逆时针方向行走个单位,一直循环下去.则某人抛掷三次骰子后棋子恰好又回到起点处的所有不同走法共有(

A.21B.22C.25D.27

查看答案和解析>>

同步练习册答案