6£®ÒÑÖªÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã³×·Ö±ðF1£®F2£¬×óÓÒ¶¥µã·Ö±ðÊÇA1¡¢A2£¬ÀëÐÄÂÊÊÇ$\frac{{\sqrt{2}}}{2}$£¬¹ýF2µÄÖ±ÏßÓëÍÖÔ²½»ÓÚÁ½µãP¡¢Q£¨²»ÊÇ×ó¡¢ÓÒ¶¥µã£©£¬ÇÒ¡÷F1PQµÄÖܳ¤ÊÇ4$\sqrt{2}$£¬Ö±ÏßAl PÂíA2Q½»ÓèµãM£®
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©¢ÙÇóÖ¤Ö±ÏßA1PÓëA2QµÄ½»µãMÔÚÒ»Ìõ¶¨Ö±ÏßlÉÏ£»¢ÚNÊǶ¨Ö±ÏßlÉϵÄÒ»µã£¬ÇÒPNƽÐÐÓÚxÖᣬ֤Ã÷£º$\frac{{|{P{F_2}}|}}{{|{PN}|}}$ÊǶ¨Öµ£®

·ÖÎö £¨1£©¸ù¾ÝÍÖÔ²µÄ½¹µãÈý½ÇÐÎÖܳ¤Çó³öa£¬ÔÙÓÉÀëÐÄÂÊÇó³öc£¬½ø¶øÇó³öbÖµ£¬¿ÉµÃÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©¢ÙÖ±ÏßPQµÄ·½³ÌÊÇ£ºx=my+1£¬´úÈëÍÖÔ²µÄ·½³Ì$\frac{{x}^{2}}{2}+{y}^{2}=1$½áºÏΤ´ï¶¨Àí£¬¿ÉµÃ£ºy1+y2£¬y1y2£¬y2-y1µÄÖµ£¬½ø¶øÁªÁ¢A1PºÍA2QµÄ·½³Ì£¬Çó³ö½»µãµÄºá×ø±ê£¬¿ÉµÃ£ºÖ±ÏßA1PÓëA2QµÄ½»µãMÔÚÒ»Ìõ¶¨Ö±Ïßl£ºx=2ÉÏ£»
¢Ú¸ù¾ÝÍÖÔ²µÄ¶¨Ò壬½áºÏÖ±Ïßl£ºx=2ΪÍÖÔ²µÄÓÒ×¼Ïߣ¬¿ÉµÃ$\frac{{|{P{F_2}}|}}{{|{PN}|}}$ÊǶ¨Öµe£®

½â´ð ½â£º£¨1£©¡ß¡÷F1PQµÄÖܳ¤ÊÇ4$\sqrt{2}$£¬
¡à4a=4$\sqrt{2}$£¬¼´a=$\sqrt{2}$£¬
ÓÖÓÉÀëÐÄÂÊÊÇe=$\frac{c}{a}$=$\frac{{\sqrt{2}}}{2}$£¬¹Êc=1£¬
¹Êb2=a2-c2=1£¬
¹ÊÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{2}+{y}^{2}=1$
Ö¤Ã÷£º£¨2£©¢ÙÓÉ£¨1£©ÖªA1¡¢A2µÄ×ø±êΪ£¨$¡À\sqrt{2}$£¬0£©£¬
ÉèÖ±ÏßPQµÄ·½³ÌÊÇ£ºx=my+1£¬
´úÈëÍÖÔ²µÄ·½³Ì$\frac{{x}^{2}}{2}+{y}^{2}=1$²¢ÕûÀíµÃ£º
£¨m2+2£©y2+2my-1=0£¬
¼ÇP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬Ôòy1+y2=$\frac{-2m}{{m}^{2}+2}$£¬y1y2=$\frac{-1}{{m}^{2}+2}$£¬
Ôòy2-y1=$\frac{2\sqrt{2}\sqrt{{m}^{2}+1}}{{m}^{2}+2}$£¬
A1PµÄ·½³ÌΪ£ºy=$\frac{{y}_{1}}{{x}_{1}+\sqrt{2}}£¨x+\sqrt{2}£©$¡­¢Ù£¬A2QµÄ·½³Ì£ºy=$\frac{{y}_{2}}{{x}_{2}-\sqrt{2}}£¨x-\sqrt{2}£©$¡­¢Ú£¬
ÁªÁ¢Á½·½³ÌµÃ£ºx=$\sqrt{2}$$\frac{{x}_{2}{y}_{1}{+x}_{1}{y}_{2}+\sqrt{2}£¨{y}_{2}{-y}_{1}£©}{{x}_{1}{y}_{2}-{x}_{2}{y}_{1}+\sqrt{2}£¨{y}_{1}+{y}_{2}£©}$=$\sqrt{2}$•$\frac{2m£¨{y}_{1}•{y}_{2}£©+£¨{y}_{1}+{y}_{2}£©+\sqrt{2}£¨{y}_{2}{-y}_{1}£©}{\sqrt{2}£¨{y}_{1}+{y}_{2}£©+£¨{y}_{2}{-y}_{1}£©}$=$\sqrt{2}$•$\frac{2m£¨\frac{-1}{{m}^{2}+2}£©+\frac{-2m}{{m}^{2}+2}+\sqrt{2}£¨\frac{2\sqrt{2}\sqrt{{m}^{2}+1}}{{m}^{2}+2}£©}{\sqrt{2}•\frac{-2m}{{m}^{2}+2}+\frac{2\sqrt{2}\sqrt{{m}^{2}+1}}{{m}^{2}+2}}$=2£¬
¹ÊÖ±ÏßA1PÓëA2QµÄ½»µãMÔÚÒ»Ìõ¶¨Ö±Ïßl£ºx=2ÉÏ£»
¢ÚÓÉÖ±Ïßl£ºx=2ΪÍÖÔ²$\frac{{x}^{2}}{2}+{y}^{2}=1$µÄÓÒ×¼Ïߣ¬
F2ΪÍÖÔ²$\frac{{x}^{2}}{2}+{y}^{2}=1$µÄÓÒ¶¥µã£¬
¹Ê$\frac{{|{P{F_2}}|}}{{|{PN}|}}$=e=$\frac{{\sqrt{2}}}{2}$

µãÆÀ ±¾Ì⿼²éµÄ֪ʶµãÊÇÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬ÍÖÔ²µÄ±ê×¼·½³Ì£¬Ö±ÏߵĽ»µã×ø±ê£¬ÍÖÔ²µÄ¶¨Ò壬ÊÇÖ±ÏßÓëԲ׶ÇúÏßµÄ×ÛºÏÓ¦Óã¬ÄѶȽϴó£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÔÚ¡÷ABCÖУ¬µãDÔÚBC±ßÉÏ£¬ÇÒ$\overrightarrow{CD}$=3$\overrightarrow{DB}$£¬$\overrightarrow{AD}$=r$\overrightarrow{AB}$+s$\overrightarrow{AC}$£¬Ôò$\frac{r}{s}$µÄÖµÊÇ£¨¡¡¡¡£©
A£®1B£®$\frac{4}{3}$C£®$\frac{1}{3}$D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÒÑÖª$\frac{1}{a^2}+\frac{4}{b^2}$=1£¨a£¾0£¬b£¾0£©£¬Ö±Ïß$\frac{x}{a}+\frac{y}{b}$=1ÓëxÖá¡¢yÖá·Ö±ð½»ÓÚµãA¡¢B£¬Ôò|AB|µÄ×îСֵΪ3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬ÔÚ¾ØÐÎABCD£¨AB£¼AD£©ÖУ¬½«¡÷ABEÑØAE¶ÔÕÛ£¬Ê¹AB±ßÂäÔÚ¶Ô½ÇÏßACÉÏ£¬µãBµÄ¶ÔÓ¦µãΪF£¬Í¬Ê±½«¡÷CEGÑØEG¶ÔÕÛ£¬Ê¹CE±ßÂäÔÚEFËùÔÚÖ±ÏßÉÏ£¬µãCµÄ¶ÔÓ¦µãΪH£®
£¨1£©Ö¤Ã÷£ºAF¡ÎHG£¨Í¼£¨1£©£©£»
£¨2£©Èç¹ûµãCµÄ¶ÔÓ¦µãHÇ¡ºÃÂäÔÚ±ßADÉÏ£¨Í¼£¨2£©£©£®ÅжÏËıßÐÎAECHµÄÐÎ×´£¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÒÑÖªÊýÁÐ{an}Âú×ãa1=1£¬an+1=5-$\frac{25}{{a}_{n}+5}$£¬Ôòa2016=$\frac{1}{404}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªsin¦È=$\frac{3}{5}$£¬¦È¡Ê£¨$\frac{¦Ð}{2}$£¬¦Ð£©£®ÇóÖµ£º¢Ùsin£¨$\frac{¦Ð}{2}$+¦È£©£»¢Útan¦È£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÈçͼÊÇÒ»¸ö¿Õ¼ä¼¸ºÎÌåµÄÈýÊÓͼ£¬¸ù¾ÝͼÖгߴ磨µ¥Î»£ºcm£©£¬¿ÉÖª¼¸ºÎÌåµÄ±íÃæ»ýÊÇ£¨¡¡¡¡£©
A£®18+2$\sqrt{3}$cm2B£®$\frac{{21\sqrt{3}}}{2}$cm2C£®18+$\sqrt{3}$cm2D£®6+2$\sqrt{3}$cm2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®º¯Êýy=3xµÄ·´º¯ÊýÊÇ£¨¡¡¡¡£©
A£®y=x3B£®y=$\root{3}{x}$C£®y=log3xD£®y=£¨$\frac{1}{3}$£©x

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªÔ²CµÄÔ²ÐÄCÔÚÅ×ÎïÏßy2=8xµÄµÚÒ»ÏóÏÞ²¿·ÖÉÏ£¬ÇÒ¾­¹ý¸ÃÅ×ÎïÏߵĶ¥µãºÍ½¹µãF
£¨1£©ÇóÔ²CµÄ·½³Ì
£¨2£©ÉèÔ²CÓëÅ×ÎïÏßµÄ×¼ÏߵĹ«¹²µãΪA£¬MÊÇÔ²CÉÏÒ»¶¯µã£¬Çó¡÷MAFµÄÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸