·ÖÎö £¨1£©¸ù¾ÝÍÖÔ²µÄ½¹µãÈý½ÇÐÎÖܳ¤Çó³öa£¬ÔÙÓÉÀëÐÄÂÊÇó³öc£¬½ø¶øÇó³öbÖµ£¬¿ÉµÃÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©¢ÙÖ±ÏßPQµÄ·½³ÌÊÇ£ºx=my+1£¬´úÈëÍÖÔ²µÄ·½³Ì$\frac{{x}^{2}}{2}+{y}^{2}=1$½áºÏΤ´ï¶¨Àí£¬¿ÉµÃ£ºy1+y2£¬y1y2£¬y2-y1µÄÖµ£¬½ø¶øÁªÁ¢A1PºÍA2QµÄ·½³Ì£¬Çó³ö½»µãµÄºá×ø±ê£¬¿ÉµÃ£ºÖ±ÏßA1PÓëA2QµÄ½»µãMÔÚÒ»Ìõ¶¨Ö±Ïßl£ºx=2ÉÏ£»
¢Ú¸ù¾ÝÍÖÔ²µÄ¶¨Ò壬½áºÏÖ±Ïßl£ºx=2ΪÍÖÔ²µÄÓÒ×¼Ïߣ¬¿ÉµÃ$\frac{{|{P{F_2}}|}}{{|{PN}|}}$ÊǶ¨Öµe£®
½â´ð ½â£º£¨1£©¡ß¡÷F1PQµÄÖܳ¤ÊÇ4$\sqrt{2}$£¬
¡à4a=4$\sqrt{2}$£¬¼´a=$\sqrt{2}$£¬
ÓÖÓÉÀëÐÄÂÊÊÇe=$\frac{c}{a}$=$\frac{{\sqrt{2}}}{2}$£¬¹Êc=1£¬
¹Êb2=a2-c2=1£¬
¹ÊÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{2}+{y}^{2}=1$
Ö¤Ã÷£º£¨2£©¢ÙÓÉ£¨1£©ÖªA1¡¢A2µÄ×ø±êΪ£¨$¡À\sqrt{2}$£¬0£©£¬
ÉèÖ±ÏßPQµÄ·½³ÌÊÇ£ºx=my+1£¬
´úÈëÍÖÔ²µÄ·½³Ì$\frac{{x}^{2}}{2}+{y}^{2}=1$²¢ÕûÀíµÃ£º
£¨m2+2£©y2+2my-1=0£¬
¼ÇP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬Ôòy1+y2=$\frac{-2m}{{m}^{2}+2}$£¬y1y2=$\frac{-1}{{m}^{2}+2}$£¬
Ôòy2-y1=$\frac{2\sqrt{2}\sqrt{{m}^{2}+1}}{{m}^{2}+2}$£¬
A1PµÄ·½³ÌΪ£ºy=$\frac{{y}_{1}}{{x}_{1}+\sqrt{2}}£¨x+\sqrt{2}£©$¡¢Ù£¬A2QµÄ·½³Ì£ºy=$\frac{{y}_{2}}{{x}_{2}-\sqrt{2}}£¨x-\sqrt{2}£©$¡¢Ú£¬
ÁªÁ¢Á½·½³ÌµÃ£ºx=$\sqrt{2}$$\frac{{x}_{2}{y}_{1}{+x}_{1}{y}_{2}+\sqrt{2}£¨{y}_{2}{-y}_{1}£©}{{x}_{1}{y}_{2}-{x}_{2}{y}_{1}+\sqrt{2}£¨{y}_{1}+{y}_{2}£©}$=$\sqrt{2}$•$\frac{2m£¨{y}_{1}•{y}_{2}£©+£¨{y}_{1}+{y}_{2}£©+\sqrt{2}£¨{y}_{2}{-y}_{1}£©}{\sqrt{2}£¨{y}_{1}+{y}_{2}£©+£¨{y}_{2}{-y}_{1}£©}$=$\sqrt{2}$•$\frac{2m£¨\frac{-1}{{m}^{2}+2}£©+\frac{-2m}{{m}^{2}+2}+\sqrt{2}£¨\frac{2\sqrt{2}\sqrt{{m}^{2}+1}}{{m}^{2}+2}£©}{\sqrt{2}•\frac{-2m}{{m}^{2}+2}+\frac{2\sqrt{2}\sqrt{{m}^{2}+1}}{{m}^{2}+2}}$=2£¬
¹ÊÖ±ÏßA1PÓëA2QµÄ½»µãMÔÚÒ»Ìõ¶¨Ö±Ïßl£ºx=2ÉÏ£»
¢ÚÓÉÖ±Ïßl£ºx=2ΪÍÖÔ²$\frac{{x}^{2}}{2}+{y}^{2}=1$µÄÓÒ×¼Ïߣ¬
F2ΪÍÖÔ²$\frac{{x}^{2}}{2}+{y}^{2}=1$µÄÓÒ¶¥µã£¬
¹Ê$\frac{{|{P{F_2}}|}}{{|{PN}|}}$=e=$\frac{{\sqrt{2}}}{2}$
µãÆÀ ±¾Ì⿼²éµÄ֪ʶµãÊÇÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬ÍÖÔ²µÄ±ê×¼·½³Ì£¬Ö±ÏߵĽ»µã×ø±ê£¬ÍÖÔ²µÄ¶¨Ò壬ÊÇÖ±ÏßÓëԲ׶ÇúÏßµÄ×ÛºÏÓ¦Óã¬ÄѶȽϴó£¬ÊôÓÚÄÑÌ⣮
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | 1 | B£® | $\frac{4}{3}$ | C£® | $\frac{1}{3}$ | D£® | 3 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | 18+2$\sqrt{3}$cm2 | B£® | $\frac{{21\sqrt{3}}}{2}$cm2 | C£® | 18+$\sqrt{3}$cm2 | D£® | 6+2$\sqrt{3}$cm2 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | y=x3 | B£® | y=$\root{3}{x}$ | C£® | y=log3x | D£® | y=£¨$\frac{1}{3}$£©x |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com