精英家教网 > 高中数学 > 题目详情
10.过双曲线$\frac{x^2}{16}-\frac{y^2}{12}=1$左焦点F1的直线交双曲线的左支于M,N两点,F2为其右焦点,则|MF2|+|NF2|-|MN|的值为16.

分析 根据双曲线第一定义有|MF2|-|MF|=2a,|NF2|-|NF|=2a,两式相加得|MF2|+|NF2|-|MN|的值.

解答 解:根据双曲线定义有|MF2|-|MF|=2a,|NF2|-|NF|=2a,
两式相加得|MF2|+|NF2|-|MN|=4a=16.
故答案为:16.

点评 本题主要考查双曲线定义的灵活运用,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图:Rt△ABC中,∠ABC=90°,AB=BC.以AB为直径的⊙O交OC于D,AD的延长线交BC于E,过点D作⊙O的切线DF交BC于F,连OF.⊙C切⊙O于点D,交BC于G.
(1)求证:OF∥AE.
(2)求$\frac{DE}{AD}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列有关命题的说法正确的是(  )
A.“若x+y=0,则x,y互为相反数”的逆命题为真命题
B.命题“若xy=0,则x=0”的否命题为“若xy=0,则x≠0”
C.命题“?x∈R,使得2x2-1<0”的否定是“?x∈R,均有2x2-1<0”
D.命题“若cosx=cosy,则x=y”的逆否命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若a>0,b<0,c<0,则直线ax+by+c=0必不通过(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数$g(x)=\frac{1}{3}{x^3}+x-m+\frac{m}{x}(m>0)$是[1,∞]上的增函数.当实数m取最大值时,若存在点Q,使得过Q的直线与曲线y=g(x)围成两个封闭图形,且这两个封闭图形的面积总相等,则点Q的坐标为(  )
A.(0,-3)B.(0,3)C.(0,-2)D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知幂函数f(x)=xa的部分对应值如下表,则不等式|f(x)|≤2的解集是(0,4]

x

1
$\frac{1}{2}$
f(x)
1
$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设变量x,y满足约束条件$\left\{{\begin{array}{l}{x+y≤3}\\{x-y≥-1}\\{y≥1}\end{array}}\right.$,则目标函数$z=\frac{y}{x+1}$的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在Rt△AOB中,∠OAB=$\frac{π}{6}$,斜边AB=4.Rt△AOC可以通过Rt△AOB以直线AO为轴旋转得到,且二面角B-AO-C是直二面角,动点D在斜边AB上.
(Ⅰ)求证:平面COD⊥平面AOB;
(Ⅱ)求CD与平面AOB所成角的正弦的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=4cos2$\frac{x}{2}$cos($\frac{π}{2}$-x)-2sinx-|ln(x+1)|的零点个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案