精英家教网 > 高中数学 > 题目详情

(本题满分12分)设函数(1) 求函数;??(2) 若存在常数k和b,使得函数对其定义域内的任意实数分别满足则称直线的“隔离直线”.试问:函数是否存在“隔离直线”?若存在,求出“隔离直线”方程,不存在,请说明理由.

(Ⅰ)当,易得,且为最小值 (Ⅱ)   


解析:

(1)

,易得,且为最小值.………4分

(2)由1)知当时,

若存在“隔离直线”,则存在常数,使得

恒成立

因此若存在的“隔离直线”,则该直线必过这个公共点

设该直线为

恒成立,得…8分

以下证明

,容易得当时有为0.

从而,即恒成立.

故函数存在唯一的“隔离直线”.………………12分

练习册系列答案
相关习题

科目:高中数学 来源:2014届吉林省吉林市高二上学期期中理科数学试卷(解析版) 题型:解答题

(本题满分12分)

设命题:实数满足,  命题:实数满足.

为真,求实数的取值范围;

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河北省石家庄市高三暑期第二次考试理科数学试卷(解析版) 题型:解答题

(本题满分12分)设函数.

(1)求函数的单调区间;

(2)若恒成立,求实数的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖北省高三十一月份阶段性考试理科数学 题型:解答题

(本题满分12分)设函数,其中

(Ⅰ)当时,求不等式的解集;

(Ⅱ)若不等式的解集为 ,求a的值。

 

查看答案和解析>>

科目:高中数学 来源:2014届黑龙江省高一上学期期末考试理科数学 题型:解答题

(本题满分12分)

设向量 

(1)若垂直,求的值

(2)求的最大值;

 

查看答案和解析>>

科目:高中数学 来源:2010-2011年云南省高二上学期期末数学理卷 题型:解答题

(本题满分12分)

,分别是椭圆的左、右焦点,过斜率为1的直线相交于两点,且成等差数列,

(Ⅰ)求的离心率;

(Ⅱ)设点满足,求的方程。

 

查看答案和解析>>

同步练习册答案