精英家教网 > 高中数学 > 题目详情
已知0<t≤
1
4
,那么
1
t
-t的最小值是(  )
A、
15
4
B、
63
8
C、2
D、-2
考点:函数的最值及其几何意义
专题:函数的性质及应用
分析:先判断函数的单调性,由单调性再求函数的最小值.
解答: 解:令f(x)=
1
x
-x
,∵y=
1
x
和y=-x在区(0,
1
4
]上都是单调递减间,∴函数f(x)在(0,
1
4
]上单调递减,
∴当x=
1
4
时,有最小值f(
1
4
)=
15
4

故答案选择:A.
点评:本题考查函数在闭区上的最值.由单调性即可以求出最值.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F1,F2是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的两个焦点,PQ是经过点F1且垂直于x轴的双曲线的弦.
(1)若∠PF2Q=90°,求该双曲线的离心率;
(2)若△PF2Q是锐角三角形,求该双曲线的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:

圆心角为
π
3
的扇形与其内切圆面积之比为(  )
A、
3
2
B、
3
C、2
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四边形ABCD中,AB⊥BC,AD⊥DC.若
AB
=
a
AD
=
.
b
,则
AC
BD
=(  )
A、
a
2-
b
2
B、
b
2-
a
2
C、
a
2+
b
2
D、
a
b

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(6,0),B(0,4),求以AB为直径的圆C的标准方程,判别M(1,2)与圆C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

求适合下列条件的双曲线方程.
(1)焦点在y轴上,且过点(3,-4
2
)、(
9
4
,5).
(2)已知双曲线的渐近线方程为2x±3y=0,且双曲线经过点P(
6
,2).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知an=
2012
-n
2013
-n
,则这个数列的前100项中最大项和最小项分别是(  )
A、a1,a100
B、a100,a1
C、a45,a44
D、a45,a46

查看答案和解析>>

科目:高中数学 来源: 题型:

实数x,y满足
x≥0
x-2y≥0
2x-y-3≤0

(Ⅰ)求z=
y
x+1
的取值范围;
(Ⅱ)若函数z=ax+by(a>0,b>0)的最大值为3,求t=a•(1+b)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+x2

(Ⅰ) 设x1、x2都是实数,且x1≠x2,求证:|f(x2)-f(x1)|<|x2-x1|;
(Ⅱ) 设a、b都是实数,且a2+b2=
1
2
,求证:f(a)+f(b)≤
5

查看答案和解析>>

同步练习册答案
关 闭