精英家教网 > 高中数学 > 题目详情

【题目】已知各项均为正数的数列{an}的前n项和为Sn , 且an﹣a1=2 (n≥2),若bn= + ,则bn=

【答案】
【解析】解:由an﹣a1=2 (n≥2),得
(n≥2),

两式作差得:(an+1﹣a1﹣an+a1)(an+1﹣a1+an﹣a1)=4a1an
整理得:(an+1﹣an﹣2a1)(an+1+an)=0,
∵an>0,
∴an+1﹣an=2a1
即数列{an}是以2a1为公差的等差数列,
则an=a1+2a1(n﹣1)=2na1﹣a1
∴an+1=2na1+a1
则bn= + = =
所以答案是:
【考点精析】掌握数列的前n项和是解答本题的根本,需要知道数列{an}的前n项和sn与通项an的关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数gx)=ax2-2ax+1+ba>0)在区间[2,4]上的最大值为9,最小值为1,记fx)=g(|x|).

(1)求实数ab的值;

(2)若不等式f(log2k)>f(2)成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个算法的程序框图如图所示,若该程序输出的结果为10,则判断框中应填入的条件是(

A.k≥﹣3
B.k≥﹣2
C.k<﹣3
D.k≤﹣3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在圆锥PO中,已知,圆O的直径,C是弧AB的中点,D为AC的中点.

(1)求异面直线PD和BC所成的角的正切值;

(2)求直线OC和平面PAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣1|+|x+a|,其中a为实常数.
(1)若函数f(x)的最小值为2,求a的值;
(2)当x∈[0,1]时,不等式|x﹣2|≥f(x)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 .

1)当时,求曲线在点处的切线方程;

2)如果不等式对于一切的恒成立,求的取值范围;

3)证明:不等式对于一切的恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆MA(-4,0),B(1,5),C(6,0)三点.

(Ⅰ)求圆M的方程

(Ⅱ)若直线ax-y+5=0(a>0)与圆M相交于PQ两点,是否存在实数a,使得弦PQ的垂直平分线l过点E(-2,4),若存在,求出实数a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论函数在定义域内的极值点的个数;

2)若函数处取得极值,且对任意, 恒成立,求实数的取值范围;

3)当时,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,AC为⊙O的直径,D为 的中点,E为BC的中点.

(1)求证:DE∥AB;
(2)求证:ACBC=2ADCD.

查看答案和解析>>

同步练习册答案