精英家教网 > 高中数学 > 题目详情

【题目】已知双曲线C: =1(a>0,b>0)的左、右焦点分别为F1 , F2 , O为坐标原点,P是双曲线在第一象限上的点且满足|PF1|=2|PF2|,直线PF2交双曲线C于另一点N,又点M满足 = 且∠MF2N=120°,则双曲线C的离心率为(
A.
B.
C.
D.

【答案】B
【解析】解:由题意,|PF1|=2|PF2|, 由双曲线的定义可得,|PF1|﹣|PF2|=2a,
可得|PF1|=4a,|PF2|=2a,
由四边形PF1MF2为平行四边形,
又∠MF2N=120°,可得∠F1PF2=120°,
在三角形PF1F2中,由余弦定理可得
4c2=16a2+4a2﹣24a2acos120°,
即有4c2=20a2+8a2 , 即c2=7a2
可得c= a,
即e= =
故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在小正方形边长为1的网格中画出了某多面体的三视图,则该多面体的外接球表面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的奇函数,若g(x)=f(x+1)+5,g′(x)为g(x)的导函数,对x∈R,总有g′(x)>2x,则g(x)<x2+4的解集为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国有个名句“运筹帷幄之中,决胜千里之外”,其中的“筹”原意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式,如图,当表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,以此类推.例如 6613 用算筹表示就是 ,则 8335 用算筹可表示为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某科技博览会展出的智能机器人有 A,B,C,D 四种型号,每种型号至少有 4 台.要求每 位购买者只能购买1台某种型号的机器人,且购买其中任意一种型号的机器人是等可能的.现在有 4 个人要购买机器人.
(Ⅰ)在会场展览台上,展出方已放好了 A,B,C,D 四种型号的机器人各一台,现把他们 排成一排表演节目,求 A 型与 B 型相邻且 C 型与 D 型不相邻的概率;
(Ⅱ)设这 4 个人购买的机器人的型号种数为ξ,求ξ 的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年双十一期间,某电子产品销售商促销某种电子产品,该产品的成本为2元/件,通过市场分析,双十一期间该电子产品销售量y(单位:千件)与销售价格x(单位:元)之间满足关系式:y= +2x2﹣35x+170(其中2<x<8,a为常数),且已知当销售价格为3元/件时,该电子产品销售量为89千件. (Ⅰ)求实数a的值及双十一期间销售该电子产品获得的总利润L(x);
(Ⅱ)销售价格x为多少时,所获得的总利润L(x)最大?并求出总利润L(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)为偶函数,当x<0时,f(x)=ln(﹣x)+3x,则曲线y=f(x)在点(1,﹣3)处的切线方程是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(m+2cos2x)cos(2x+θ)为奇函数,且f( )=0,其中m∈R,θ∈(0,π)
(Ⅰ)求函数f(x)的图象的对称中心和单调递增区间
(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,且f( + )=﹣ ,c=1,ab=2 ,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知g(x)是定义在R上的奇函数,且当x<0时,g(x)=﹣ln(1﹣x),函数f(x)= ,若f(2﹣x2)>f(x),则x的取值范围是(
A.(﹣∞,﹣2)∪(1,+∞)
B.(﹣∞,1)∪(2,+∞)
C.(﹣2,1)
D.(1,2)

查看答案和解析>>

同步练习册答案