精英家教网 > 高中数学 > 题目详情

(本题满分15分)已知函数
(1)求函数的图像在点处的切线方程;
(2)若,且对任意恒成立,求的最大值;

(1); (2)整数的最大值是3.

解析试题分析:(1)解:因为,所以
函数的图像在点处的切线方程;…………5分
(2)解:由(1)知,,所以对任意恒成立,即对任意恒成立.…………7分
,则,……………………8分
,则
所以函数上单调递增.………………………9分
因为,所以方程上存在唯一实根,且满足
,即,当,即,…13分
所以函数上单调递减,在上单调递增.
所以.…………14分
所以.故整数的最大值是3.………………………15分
考点:本题主要考查导数的几何意义,应用导数研究函数的单调性及极值。
点评:典型题,本题属于导数应用中的基本问题,像涉及恒成立问题,往往通过研究函数的最值达到解题目的。涉及对数函数,要特别注意函数的定义域。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数.
(I)若曲线与曲线在它们的交点处具有公共切线,求的值;
(II)当时,若函数在区间内恰有两个零点,求的取值范围;
(III)当时,求函数在区间上的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知在区间上是增函数,在区间上是减函数,且
(1)求函数的解析式.
(2)若在区间上恒有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题14分)已知函数处取得极值,且在处的切线的斜率为1。
(Ⅰ)求的值及的单调减区间;
(Ⅱ)设>0,>0,,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数.(
(1)若函数有三个零点,且,求函数 的单调区间;
(2)若,试问:导函数在区间(0,2)内是否有零点,并说明理由.
(3)在(Ⅱ)的条件下,若导函数的两个零点之间的距离不小于,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分15分)
已知函数的导函数(为自然对数的底数)
(Ⅰ)解关于的不等式:
(Ⅱ)若有两个极值点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数
(Ⅰ)若函数处取得极值,求的值;
(Ⅱ)若,函数上是单调函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(满分12分)已知函数.(Ⅰ) 求上的最小值;(Ⅱ) 若存在是常数,=2.71828)使不等式成立,求实数的取值范围;
(Ⅲ) 证明对一切都有成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,其中是自然常数,
(Ⅰ)当时, 研究的单调性与极值;
(Ⅱ)在(Ⅰ)的条件下,求证:

查看答案和解析>>

同步练习册答案