精英家教网 > 高中数学 > 题目详情
3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,左,右焦点分别是F1,F2,以F1为圆心以3为半径的圆与以F2为圆心以1为半径的圆相交,且交点在椭圆C上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)线段PQ是椭圆C过点F2的弦,且$\overrightarrow{P{F}_{2}}$=λ$\overrightarrow{{F}_{2}Q}$.
(i)求△PF1Q的周长;
(ii)求△PF1Q内切圆面积的最大值,并求取得最大值时实数λ的值.

分析 (Ⅰ)由题意可知,|PF1|+|PF2|=2a=4,可得a=2,又$\frac{c}{a}$=$\frac{1}{2}$,a2-c2=b2,解出即可得出.
(Ⅱ)(i)由(Ⅰ)知:a=2.线段PQ是椭圆C过点F2的弦,则△PF1Q的周长=4a.
(ii)因为三角形内切圆的半径与三角形周长的乘积是面积的2倍,且△F1PQ的周长是定值8,所以只需求出△F1PQ面积的最大值.设直线l方程为x=my+1,与椭圆方程联立得(3m2+4)y2+6my-9=0,设P(x1,y1),Q(x2,y2),|y1-y2|=$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$,于是${S}_{△{F}_{1}PQ}$=$\frac{1}{2}$|F1F2|•|y1-y2|,进而得出.

解答 解:(Ⅰ)由题意可知,|PF1|+|PF2|=2a=3+1=4,可得a=2,
又$\frac{c}{a}$=$\frac{1}{2}$,a2-c2=b2,可得c=1,b=$\sqrt{3}$,
即有椭圆C的方程为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1.
(Ⅱ)(i)由(Ⅰ)知:a=2.
线段PQ是椭圆C过点F2的弦,则△PF1Q的周长=4a=8.
(ii)因为三角形内切圆的半径与三角形周长的乘积是面积的2倍,
且△F1PQ的周长是定值8,所以只需求出△F1PQ面积的最大值.
设直线l方程为x=my+1,与椭圆方程联立得(3m2+4)y2+6my-9=0,
设P(x1,y1),Q(x2,y2),则y1+y2=-$\frac{6m}{3{m}^{2}+4}$,y1y2=-$\frac{9}{3{m}^{2}+4}$,
|y1-y2|=$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=$\sqrt{(\frac{-6m}{3{m}^{2}+4})^{2}+\frac{4×9}{3{m}^{2}+4}}$=12$\sqrt{\frac{{m}^{2}+1}{(3{m}^{2}+4)^{2}}}$.
于是${S}_{△{F}_{1}PQ}$=$\frac{1}{2}$|F1F2|•|y1-y2|=12$\sqrt{\frac{{m}^{2}+1}{(3{m}^{2}+4)^{2}}}$,设m2+1=t≥1.
∵$\frac{{m}^{2}+1}{(3{m}^{2}+4)^{2}}$=$\frac{t}{(3t+1)^{2}}$=$\frac{1}{9t+\frac{1}{t}+6}$≤$\frac{1}{16}$,
∴S△F1PQ≤3,
所以内切圆半径r=$\frac{2S△{F}_{1}PQ}{8}$≤$\frac{3}{4}$,此时m=0,λ=1.
因此其面积最大值是$\frac{9}{16}$π.

点评 本题考查了椭圆的标准方程及其性质、一元二次方程根与系数的关系、弦长公式、三角形内切圆的性质,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.如图,正方体ABCD-A1B1C1D1绕其体对角线BD1旋转θ之后与其自身重合,则θ的值可以是(  )
A.$\frac{5π}{6}$B.$\frac{3π}{4}$C.$\frac{2π}{3}$D.$\frac{3π}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知关于x的函数f(x)=x2-2ax+2.
(1)当a≤2时,求f(x)在[$\frac{1}{3}$,3]上的最小值g(a);
(2)如果函数f(x)同时满足:
        ①函数在整个定义域上是单调增函数或单调减函数;
        ②在函数的定义域内存在区间[p,q],使得函数在区间[p,q]上的值域为[p2,q2].则我们称函数f(x)是该定义域上的“闭函数”.
(i)若关于x的函数y=$\sqrt{{x}^{2}-1}$+t(x≥1)是“闭函数”,求实数t的取值范围;
(ii)判断(1)中g(a)是否为“闭函数”?若是,求出p,q的值或关系式;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x2-2(a-2)x-b2+13.
(1)先后两次抛掷一枚质地均匀的骰子(骰子六个面上分别标有数字1,2,3,4,5,6),骰子向上的数字一次记为a,b,求方程f(x)=0有两个不等正根的概率;
(2)如果a∈[2,6],求函数f(x)在区间[2,3]上是单调函数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,边a,b,c分别是角A,B,C的对边,cosA=$\frac{4}{5}$,b=2,△ABC的面积S=3,则边a的值为$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知向量$\overrightarrow{a}$=(2sin$\frac{x}{4}$,2sin$\frac{x}{4}$),$\overrightarrow{b}$=(cos$\frac{x}{4}$,-$\sqrt{3}$sin$\frac{x}{4}$).
(Ⅰ)求函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$+$\sqrt{3}$的最小正周期;
(Ⅱ)若β=$\frac{2sinα}{f(2α+\frac{π}{3})}$,g(β)=tan2α,α≠$\frac{π}{4}$+$\frac{kπ}{2}$且α≠$\frac{π}{2}$+kπ(k∈Z),数列{an}满足a1=$\frac{1}{4}$,an+12=$\frac{1}{2}$ang(an)(n≤16且n∈N*),令bn=$\frac{1}{{{a}_{n}}^{2}}$,求数列{bn}的通项公式及前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x+y≤3}&{\;}\\{x-y≤2}&{\;}\\{x≥1}&{\;}\end{array}\right.$,若x+2y≥a恒成立,则实数a的取值范围为(  )
A.(-∞,-1]B.(-∞,2]C.(-∞,3]D.[-1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在正方体ABCD-A1B1C1D1中AD1与BD所成的角为(  )
A.45°B.90°C.60°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=sin(ωx+$\frac{π}{4}$)(ω>0)在($\frac{π}{12}$,$\frac{π}{3}$)上有最大值,但没有最小值,则ω的取值范围是($\frac{3}{4}$,3).

查看答案和解析>>

同步练习册答案