分析 (Ⅰ)由题意可知,|PF1|+|PF2|=2a=4,可得a=2,又$\frac{c}{a}$=$\frac{1}{2}$,a2-c2=b2,解出即可得出.
(Ⅱ)(i)由(Ⅰ)知:a=2.线段PQ是椭圆C过点F2的弦,则△PF1Q的周长=4a.
(ii)因为三角形内切圆的半径与三角形周长的乘积是面积的2倍,且△F1PQ的周长是定值8,所以只需求出△F1PQ面积的最大值.设直线l方程为x=my+1,与椭圆方程联立得(3m2+4)y2+6my-9=0,设P(x1,y1),Q(x2,y2),|y1-y2|=$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$,于是${S}_{△{F}_{1}PQ}$=$\frac{1}{2}$|F1F2|•|y1-y2|,进而得出.
解答 解:(Ⅰ)由题意可知,|PF1|+|PF2|=2a=3+1=4,可得a=2,
又$\frac{c}{a}$=$\frac{1}{2}$,a2-c2=b2,可得c=1,b=$\sqrt{3}$,
即有椭圆C的方程为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1.
(Ⅱ)(i)由(Ⅰ)知:a=2.
线段PQ是椭圆C过点F2的弦,则△PF1Q的周长=4a=8.
(ii)因为三角形内切圆的半径与三角形周长的乘积是面积的2倍,
且△F1PQ的周长是定值8,所以只需求出△F1PQ面积的最大值.
设直线l方程为x=my+1,与椭圆方程联立得(3m2+4)y2+6my-9=0,
设P(x1,y1),Q(x2,y2),则y1+y2=-$\frac{6m}{3{m}^{2}+4}$,y1y2=-$\frac{9}{3{m}^{2}+4}$,
|y1-y2|=$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=$\sqrt{(\frac{-6m}{3{m}^{2}+4})^{2}+\frac{4×9}{3{m}^{2}+4}}$=12$\sqrt{\frac{{m}^{2}+1}{(3{m}^{2}+4)^{2}}}$.
于是${S}_{△{F}_{1}PQ}$=$\frac{1}{2}$|F1F2|•|y1-y2|=12$\sqrt{\frac{{m}^{2}+1}{(3{m}^{2}+4)^{2}}}$,设m2+1=t≥1.
∵$\frac{{m}^{2}+1}{(3{m}^{2}+4)^{2}}$=$\frac{t}{(3t+1)^{2}}$=$\frac{1}{9t+\frac{1}{t}+6}$≤$\frac{1}{16}$,
∴S△F1PQ≤3,
所以内切圆半径r=$\frac{2S△{F}_{1}PQ}{8}$≤$\frac{3}{4}$,此时m=0,λ=1.
因此其面积最大值是$\frac{9}{16}$π.
点评 本题考查了椭圆的标准方程及其性质、一元二次方程根与系数的关系、弦长公式、三角形内切圆的性质,考查了推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:选择题
A. | $\frac{5π}{6}$ | B. | $\frac{3π}{4}$ | C. | $\frac{2π}{3}$ | D. | $\frac{3π}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,-1] | B. | (-∞,2] | C. | (-∞,3] | D. | [-1,3] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com