精英家教网 > 高中数学 > 题目详情

(本小题满分13分)
(1)证明:函数上是减函数,在[,+∞)上是增函数;

解: (1)证明:见解析;
(2)当时,方程无解;当方程有一个解;当时,方程有两个解.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(I)求证:不论为何实数总是为增函数;
(II)确定的值, 使为奇函数;
(Ⅲ)当为奇函数时, 求的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,()。
(1)设,令,试判断函数上的单调性并证明你的结论;
(2)若的定义域和值域都是,求的最大值;
(3)若不等式恒成立,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
.已知函数 是奇函数.
(1)求实数的值;
(2)若函数在区间上单调递增,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数是定义在(–1,1)上的奇函数,且.
(1)求函数f(x)的解析式;
(2)判断函数f(x)在(–1,1)上的单调性并用定义证明;
(3)解关于x的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分16分)定义在的函数
(1)对任意的都有
(2)当时,,回答下列问题:
①判断的奇偶性,并说明理由;
②判断的单调性,并说明理由;
③若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知
(1)求函数f(x)的表达式?
(2)求函数f(x)的定义域?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(I)若的一个极值点,求a的值;
(II)求证:当上是增函数;
(III)若对任意的总存在成立,求实数m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求函数的定义域和値域.

查看答案和解析>>

同步练习册答案