【题目】已知点,圆,过点的动直线与圆交于两点,线段的中点为为坐标原点.
(1)求的轨迹方程;
(2)当时,求的方程及的面积.
【答案】(1);(2), .
【解析】试题分析:(Ⅰ)由圆的方程求出圆心坐标和半径,设出的坐标,由与数量积等于列式得的轨迹方程;(Ⅱ)设的轨迹的圆心为,由得到,求岀所在直线的斜率,由直线的方程的点斜式得到所在直线方程,由点到直线的距离公式求出到的距离,再由弦心距、圆的半径及弦长间的关系求出的长度,代入三角形的面积公式得答案.
试题解析:(Ⅰ) 圆的方程可化为,
所以圆心为,半径为.
设,则.
由题设知,故,即.
由于点在圆的内部,所以的轨迹方程是.
(Ⅱ)由(1)可知的轨迹是以点为圆心, 为半径的圆.
由于,故在线段的垂直平分线上,又在圆上,从而.
因为的斜率为,所以直线的斜率为,故的方程为.
又, 到直线的距离为,
故,所以的面积为.
科目:高中数学 来源: 题型:
【题目】为了响应教育部颁布的《关于推进中小学生研学旅行的意见》,某校计划开设八门研学旅行课程,并对全校学生的选课意向进行调查(调查要求全员参与,每个学生必须从八门课程中选出唯一一门课程).本次调查结果如下.
图中,课程为人文类课程,课程为自然科学类课程.为进一步研究学生选课意向,结合上面图表,采取分层抽样方法从全校抽取1%的学生作为研究样本组(以下简称“组”).
(Ⅰ)在“组”中,选择人文类课程和自然科学类课程的人数各有多少?
(Ⅱ)某地举办自然科学营活动,学校要求:参加活动的学生只能是“组”中选择课
程或课程的同学,并且这些同学以自愿报名缴费的方式参加活动. 选择课程的学生中有人参加科学营活动,每人需缴纳元,选择课程的学生中有人参加该活动,每人需缴纳元.记选择课程和课程的学生自愿报名人数的情况为,参加活动的学生缴纳费用总和为元.
①当时,写出的所有可能取值;
②若选择课程的同学都参加科学营活动,求元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】潍坊文化艺术中心的观光塔是潍坊市的标志性建筑,某班同学准备测量观光塔的高度(单位:米),如图所示,垂直放置的标杆的高度米,已知, .
(1)该班同学测得一组数据: ,请据此算出的值;
(2)该班同学分析若干测得的数据后,发现适当调整标杆到观光塔的距离(单位:米),使与的差较大,可以提高测量精确度,若观光塔高度为136米,问为多大时, 的值最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下表给出三种食物的维生素含量及其成本:
|
| ||
维生素A(单位/千克) | 4000 | 5000 | 300 |
维生素B(单位/千克) | 700 | 100 | 300 |
成本(元/千克) | 6 | 4 | 3 |
现欲将三种食物混合成本100千克的混合食品,要求至少含35000单位维生素A,40000单位维生素B,采用何种配比成本最小?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知左、右焦点分别为的椭圆与直线相交于两点,使得四边形为面积等于的矩形.
(1)求椭圆的方程;
(2)过椭圆上一动点(不在轴上)作圆的两条切线,切点分别为,直线与椭圆交于两点, 为坐标原点,求的面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我校举行的 “青年歌手大选赛”吸引了众多有才华的学生参赛.为了了解本次比赛成绩情况,从中抽取了50名学生的成绩(得分取正整数,满分为100分)作为样本进行统计.请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解决下列问题:
组别 | 分组 | 频数 | 频率 |
第1组 | [50,60) | 8 | 0.16 |
第2组 | [60,70) | a | ▓ |
第3组 | [70,80) | 20 | 0.40 |
第4组 | [80,90) | ▓ | 0.08 |
第5组 | [90,100] | 2 | b |
合计 | ▓ | ▓ |
(1)求出的值;
(2)在选取的样本中,从成绩是80分以上(含80分)的同学中随机抽取2名同学参加元旦晚会,求所抽取的2名同学中至少有1名同学来自第5组的概率;
(3)根据频率分布直方图,估计这50名学生成绩的众数、中位数和平均数。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知甲、乙两个容器,甲容器容量为,装满纯酒精,乙容器容量为,其中装有体积为的水(:单位: ).现将甲容器中的液体倒人乙容器中,直至甲容器中液体倒完或乙容器盛满,搅拌使乙容器中两种液体充分混合,再将乙容器中的液体倒人甲容器中直至倒满,搅拌使甲容器中液体充分混合,如此称为一次操作,假设操作过程中溶液体积变化忽略不计.设经过次操作之后,乙容器中含有纯酒精(单位: ),下列关于数列的说法正确的是( )
A. 当时,数列有最大值
B. 设,则数列为递减数列
C. 对任意的,始终有
D. 对任意的,都有
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校从参加高二某次月考的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六组后得到如右所示的部分频率分布直方图。观察图形信息,回答下列问题:
(Ⅰ)求分数在内的频率;
(Ⅱ)用分层抽样的方法在分数段的学生中抽取一个容量为6的样本,再从该样本中任取2人,求至多有1人在分数段内的概率。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com