【题目】已知函数,其中e是自然数对数的底数,若,则实数a的取值范围是( )
A. B. C. D.
【答案】B
【解析】
利用函数的奇偶性将函数转化为f(M)≤f(N)的形式,再利用单调性脱去对应法则f,转化为一般的二次不等式求解即可.
由于,,则f(﹣x)=﹣x3+e﹣x﹣ex=﹣f(x),故函数f(x)为奇函数.
故原不等式f(a﹣1)+f(2a2)≤0,可转化为f(2a2)≤﹣f(a﹣1)=f(1﹣a),即f(2a2)≤f(1﹣a);
又f'(x)=3x2﹣cosx+ex+e﹣x,由于ex+e﹣x≥2,故ex+e﹣x﹣cosx>0,
所以f'(x)=3x2﹣cosx+ex+e﹣x≥0恒成立,
故函数f(x)单调递增,则由f(2a2)≤f(1﹣a)可得,2a2≤1﹣a,即2a2+a﹣1≤0,
解得,
故选:B.
科目:高中数学 来源: 题型:
【题目】定义在R上的函数和二次函数满足:,,
(1)求和的解析式;
(2)若对于,,均有成立,求a的取值范围;
(3)设,在(2)的条件下,讨论方程的解的个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)当时,求函数的值域;
(2)若函数的最大值是,求的值;
(3)已知,若存在两个不同的正数,当函数的定义域为时,的值域为,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(a>0,a≠1)的图象过点(0,﹣2),(2,0)
(1)求a与b的值;
(2)求x∈[﹣1,2]时,求f(x)的最大值与最小值.
(3)求使成立的x范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C的焦点为(,0),(,0),且椭圆C过点M(4,1),直线l:不过点M,且与椭圆交于不同的两点A,B.
(1)求椭圆C的标准方程;
(2)求证:直线MA,MB与x轴总围成一个等腰三角形.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆:的离心率为,过左焦点且斜率为的直线交椭圆于两点,线段的中点为,直线:交椭圆于两点.
(1)求椭圆的方程;
(2)求证:点在直线上;
(3)是否存在实数,使得?若存在,求出的值,若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com