精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中e是自然数对数的底数,若,则实数a的取值范围是( )

A. B. C. D.

【答案】B

【解析】

利用函数的奇偶性将函数转化为fM)≤fN)的形式,再利用单调性脱去对应法则f,转化为一般的二次不等式求解即可.

由于,,则f(﹣x)=﹣x3+exex=﹣fx),故函数fx)为奇函数.

故原不等式fa﹣1)+f(2a2)≤0,可转化为f(2a2)≤﹣fa﹣1)=f(1﹣a),即f(2a2)≤f(1﹣a);

f'(x)=3x2﹣cosx+ex+ex,由于ex+ex≥2,故ex+ex﹣cosx>0,

所以f'(x)=3x2﹣cosx+ex+ex≥0恒成立,

故函数fx)单调递增,则由f(2a2)≤f(1﹣a)可得,2a2≤1﹣a,即2a2+a﹣1≤0,

解得

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】写出下列命题的否定,并判断其真假:

(1)任何有理数都是实数;

(2)存在一个实数,能使成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数和二次函数满足:

1)求的解析式;

2)若对于,均有成立,求a的取值范围;

3)设,在(2)的条件下,讨论方程的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的值域;

(2)若函数的最大值是,求的值;

(3)已知,若存在两个不同的正数,当函数的定义域为时,的值域为,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的图像过点,且在点处的切线方程为.

1)求的解析式;

2)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数a0a≠1)的图象过点(0,﹣2),(20

1)求ab的值;

2)求x[12]时,求fx)的最大值与最小值.

3)求使成立的x范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直角梯形中, ,等腰梯形中, ,且平面平面

(1)求证: 平面

(2)若与平面所成角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的焦点为(,0)(0),且椭圆C过点M(4,1),直线l不过点M,且与椭圆交于不同的两点A,B.

(1)求椭圆C的标准方程;

(2)求证:直线MA,MB与x轴总围成一个等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的离心率为,过左焦点且斜率为的直线交椭圆两点,线段的中点为,直线交椭圆两点.

(1)求椭圆的方程;

(2)求证:点在直线上;

(3)是否存在实数,使得?若存在,求出的值,若不存在,说明理由.

查看答案和解析>>

同步练习册答案