精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)若曲线在点处的切线方程为,求的值;

2)若的导函数存在两个不相等的零点,求实数的取值范围;

3)当时,是否存在整数,使得关于的不等式恒成立?若存在,求出的最大值;若不存在,说明理由.

【答案】1;(2;(3)存在,最大值为.

【解析】

1)求出函数的导数,由题意得出从而可求出实数的值;

2)令,可得知函数上有两个零点,分两种情况讨论,利用导数分析函数在区间上的单调性和极值,由题意转化为函数极值相关的不等式,解出即可得出实数的取值范围;

3)将代入函数的解析式得出,对该函数求导得出,构造函数,利用单调性结合零点存在定理找出函数的极小值点,并满足,结合此关系式计算得出,从而可得出整数的最大值.

1

因为曲线在点处的切线方程为

所以,得

2)因为存在两个不相等的零点.

所以存在两个不相等的零点,则.

①当时,,所以单调递增,至多有一个零点

②当时,因为当时,单调递增,

时,单调递减,

所以时,.

因为存在两个零点,所以,解得.

因为,所以.

因为,所以上存在一个零点.

因为,所以.

因为,设,则

因为,所以单调递减,

所以,所以

所以上存在一个零点.

综上可知,实数的取值范围为

3)当时,

,则.所以单调递增,

,所以存在使得

因为当时,,即,所以单调递减;

时,,即,所以单调递增,

所以时,取得极小值,也是最小值,

此时

因为,所以

因为,且为整数,所以,即的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点到点的距离比它到轴的距离多1,记点的轨迹为

1)求轨迹的方程;

2)求定点到轨迹上任意一点的距离的最小值;

3)设斜率为的直线过定点,求直线与轨迹恰好有一个公共点,两个公共点,三个公共点时的相应取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于统计数据的分析,有以下几个结论,其中正确的个数为(

①利用残差进行回归分析时,若残差点比较均匀地落在宽度较窄的水平带状区域内,则说明线性回归模型的拟合精度较高;

②将一组数据中的每个数据都减去同一个数后,期望与方差均没有变化;

③调查剧院中观众观后感时,从50排(每排人数相同)中任意抽取一排的人进行调查是分层抽样法;

④已知随机变量服从正态分布,且,则.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《孙子算经》是中国古代重要的数学著作,书中有一问题:今有方物一束,外周一匝有三十二枚,问积几何?,该著作中提出了一种解决此问题的方法:重置二位,左位减八,余加右位,至尽虚减一,即得.”通过对该题的研究发现,若一束方物外周一匝的枚数8的整数倍时,均可采用此方法求解,如图是解决这类问题的程序框图,若输入,则输出的结果为(

A.80B.47C.79D.48

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的最大值为.

(Ⅰ)求实数的值;

(Ⅱ)当时,讨论函数的单调性;

(Ⅲ)当时,令,是否存在区间.使得函数在区间上的值域为若存在,求实数的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】算筹是在珠算发明以前我国独创并且有效的计算工具,为我国古代数学的发展做出了很大贡献.在算筹计数法中,以“纵式”和“横式”两种方式来表示数字,如图:

表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,遇零则置空,如图:

如果把5根算筹以适当的方式全部放入 下面的表格中,那么可以表示的三位数的个数为( )

A.

B.

C.

D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱柱ABCD-中,地面ABCD为直角梯形,ABCDABBC,平面ABCD⊥平面AB,∠BA=60°,AB=A=2BC=2CD=2

1)求证:BCA

2)求二面角D-A-B的余弦值;

3)在线段D上是否存在点M,使得CM∥平面DA?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中真命题的个数是  

中,的三内角ABC成等差数列的充要条件;

若“,则”的逆命题为真命题;

充分不必要条件;

的充要条件.

A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右顶点分别为CD,且过点P是椭圆上异于CD的任意一点,直线PCPD的斜率之积为

1)求椭圆的方程;

2O为坐标原点,设直线CP交定直线x = m于点Mm为何值时,为定值.

查看答案和解析>>

同步练习册答案