精英家教网 > 高中数学 > 题目详情

已知函数f(x)=数学公式(ω>0,x∈R)的最小正周期为数学公式
(1)求f(x)的解析式,并写出函数f(x)图象的对称中心的坐标;
(2)当x∈[数学公式]时,设a=2f(x),解不等式loga(x2+x)>loga(x+2)

解:(1)∵f(x)=sin2ωx-+
=sin2ωx-cos2ωx
=sin(2ωx-).又f(x)的最小正周期为
=
∴ω=2,故f(x)=sin(4x-
∴由4x-=kπ得:x=+,k∈Z,
∴函数f(x)图象的对称中心的坐标为:(+,0)k∈Z,
(2)∵≤x≤
≤4x-
∴f(x)=sin(4x-)<0.
∴0<a=2f(x)<1.
∵loga(x2+x)>loga(x+2),
∴0<x2+x<x+2,
∴-<x<-1或0<x<
当x∈[]时,不等式loga(x2+x)>loga(x+2)的解集为:{x|-<x<-1或0<x<}.
分析:(1)利用二倍角公式与辅助角公式即可求得f(x)的解析式,从而可写出函数f(x)图象的对称中心的坐标;
(2)根据f(x)=sin(4x-),x∈[]时,a=2f(x),求得a∈(0,1)从而可求得不等式loga(x2+x)>loga(x+2)的解集.
点评:本题考查二倍角公式与辅助角公式,考查正弦函数的对称性与值域,突出考查解对数不等式,注重综合分析与应用能力的考查,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案