精英家教网 > 高中数学 > 题目详情

已知抛物线x2=2py(p>0)上一点P的坐标为(x0,y0)及直线数学公式上一点数学公式,过点Q作抛物线的两条切线QA,QB(A,B为切点).
(1)求过点P与抛物线相切的直线l的方程;
(2)求直线AB的方程.
(3)当点Q在直线数学公式上变化时,求证:直线AB过定点,并求定点坐标.

解:(1)由x2=2py(p>0)得,故,故过点P与抛物线相切的直线l的方程为
化简得,x0x-p(y+y0)=0(5分)
(2)设A(x1,y1),B(x2,y2),由(1)得,直线QA方程为x1x-p(y+y1)=0,
直线QB方程为x2x-p(y+y2)=0,又点为直线QA,QB的交点,

故点A,B都在直线上
即直线AB的方程为(12分)
(3)由(2)知直线AB过定点,定点坐标坐标为(15分)
注:其他解法相应给分.
分析:(1)由x2=2py(p>0)得,故,由此能求出过点P与抛物线相切的直线l的方程.
(2)设A(x1,y1),B(x2,y2),由直线QA方程为x1x-p(y+y1)=0,直线QB方程为x2x-p(y+y2)=0,又点为直线QA,QB的交点,能求出直线AB的方程.
(3)由AB的方程知直线AB过定点,定点坐标坐标为
点评:本题主要考查直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法及直线与抛物线的相关知识,解题时要注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•合肥三模)已知抛物线C的方程为x2=2py(p>0),过抛物线上点M(-2
p
,p)作△MAB,A、B两均在抛物线上.过M作x轴的平行线,交抛物线于点N.
(I)若MN平分∠AMB,求证:直线AB的斜率为定值;
(II)若直线AB的斜率为
p
,且点N到直线MA,MB的距离的和为4p,试判断△MAB的形状,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•广州模拟)已知抛物线x2=2py(p>0),过动点M(0,a),且斜率为1的直线L与该抛物线交于不同两点A、B,|AB|≤2p,
(1)求a的取值范围;
(2)若p=2,a=3,求直线L与抛物线所围成的区域的面积.

查看答案和解析>>

科目:高中数学 来源:黑龙江省大庆实验中学2010-2011学年高二上学期期末考试数学理科试题 题型:013

已知抛物线x2=2py(p>0),过点向抛物线引两条切线,AB为切点,则线段AB的长度是

[  ]
A.

2p

B.

p

C.

D.

查看答案和解析>>

科目:高中数学 来源:广东省广州市2007年高三年级六校联考数学理科试卷 题型:044

已知抛物线x2=2py(p>0),过动点M(0,a),且斜率为1的直线L与该抛物线交于不同两点A、B,|AB|≤2p,

(1)求a的取值范围;

(2)若p=2,a=3,求直线L与抛物线所围成的区域的面积;

查看答案和解析>>

科目:高中数学 来源:2010年江西省名校高考信息卷一(理) 题型:选择题

 已知抛物线x2 = 2py (p > 0),过点M (0 , - )向抛物线引两条切线,AB为切点,则线段

AB的长度是

A.2p

B.p

C.

D.

 

查看答案和解析>>

同步练习册答案