【题目】已知等比数列的前项和为,公比, , .
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设, 为{}的前项和,求.
【答案】(Ⅰ) ;(Ⅱ) .
【解析】试题分析:
(Ⅰ)由题意求得数列的首项、公比均为2,则数列的通项公式为an=2n;
(Ⅱ)由题意裂项求和可得 .
试题解析:
(I)∵等比数列{an}的前n项和为Sn,公比q>0,S2=2a2﹣2,S3=a4﹣2.
∴a3=a4﹣2a2,可得a2q=a2(q2﹣2),
∴q2﹣q﹣2=0,解得q=2.∴a1+a2=2a2﹣2,即a1=a2﹣2=2a1﹣2,解得a1=2.
∴an=2n.
(II)n为奇数时,bn===.
n为偶数时,bn=.
∴T2n=++…+++…+
=++…+
=++…+.
设A=+…+,
则A=+…++,
∴A=+…+﹣=﹣,
∴A=﹣.
∴T2n=+﹣.
科目:高中数学 来源: 题型:
【题目】己知函数f(x)=loga(x+1),g(x)=2loga(2x+t)(t∈R),a>0,且a≠1.
(1)若1是关于x的方程f(x)﹣g(x)=0的一个解,求t的值;
(2)当0<a<1且t=﹣1时,解不等式f(x)≤g(x);
(3)若函数F(x)=af(x)+tx2﹣2t+1在区间(﹣1,2]上有零点,求t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设复数z=a+i(i是虚数单位,a∈R,a>0),且|z|= .
(Ⅰ)求复数z;
(Ⅱ)在复平面内,若复数+(m∈R)对应的点在第四象限,求实数m取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列各组函数,在同一直角坐标系中f(x)与g(x)相同的一组是( )
A.f(x)= ,g(x)=
B.f(x)= ,g(x)=x﹣3
C.f(x)= ,g(x)=
D.f(x)=x,g(x)=lg(10x)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】徐州、苏州两地相距500千米,一辆货车从徐州匀速行驶到苏州,规定速度不得超过100千米/小时.已知货车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比,比例系数为0.01;固定部分为a元(a>0).
(1)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;
(2)为了使全程运输成本最小,汽车应以多大速度行驶?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com