精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)若在区间上恒成立,求a的取值范围.

(2)对任意,总存在唯一的,使得成立,求a的取值范围.

【答案】1;(2

【解析】

1)讨论的大小去掉绝对值,然后分类讨论讨论导数符号研究函数在的单调性,从而求出函数的最小值,使的最小值恒大于等于,求出的取值范围;

2)根据(1)的分类讨论求出函数的最小值,使的最小值恒小于等于的最小值,从而求出的取值范围.

1)①当时,恒成立,

上增函数,故当时,e

②当时,

时,时为正数,所以在区间上为增函数,

故当时,,且此时

,即时,时为负数,在间时为正数,

所以在区间上为减函数,在上为增函数,故当时,

且此时e

,即时,时为负数,所以在区间上为减函数,

故当时,e

综上所述,函数的最小值为

所以当时,得;当时,无解;

时,得不成立.

综上,所求的取值范围是

2)①当时,单调递增,需满足

解得

②当时,先减后增,需满足,即

因为单调递减,所以

因此

③当时,递增,在递减,在递增,

所以需满足,即

,所以递增,且

所以恒成立,即不成立,舍去

④当时,递增,在递减,在递增,

所以需满足

因为,所以不成立,舍去

综上,所求的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知RtABC如图(1),∠C90°D.E分别是ACAB的中点,将△ADE沿DE折起到PDE位置(即A点到P点位置)如图(2)使∠PDC60°

1)求证:BCPC

(2)若BC2CD4,求点D到平面PBE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处的切线斜率为2.

(Ⅰ)求的单调区间和极值;

(Ⅱ)若上无解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥的展开图如图二,其中四边形为边长等于的正方形,均为正三角形,在三棱锥中:

1)证明:平面平面

2)若的中点,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为正方形,底面为线段的中点,若为线段上的动点(不含.

1)平面与平面是否互相垂直?如果是,请证明;如果不是,请说明理由;

2)求二面角的余弦值的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】郴州某超市计划按月订购一种饮料,每天进货量相同,进货成本每瓶6元,售价每瓶8元,未售出的饮料降价处理,以每瓶3元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间,需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:

最高气温

天数

2

16

36

25

7

4

以最高气温位于各区间的频率估计最高气温位于该区间的概率.

1)求六月份这种饮料一天的需求量X(单位:瓶)的分布列;

2)设六月份一天销售这种饮料的利润为Y(单位:元),当六月份这种饮料一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°AB=2PD=OACBD的交点,E为棱PB上一点.

1)证明:平面EAC⊥平面PBD

2)若PD∥平面EAC,求三棱锥P-EAD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】201911日新修订的个税法正式实施,规定:公民全月工资、薪金所得不超过5000元的部分不必纳税,超过5000元的部分为全月应纳税所得额.此项税款按下表分段累计计算(预扣):

全月应缴纳所得额

税率

不超过3000元的部分

超过3000元至12000元的部分

超过12000元至25000元的部分

国家在实施新个税时,考虑到纳税人的实际情况,实施了《个人所得税税前专项附加扣税暂行办法》,具体如下表:

项目

每月税前抵扣金额(元)

说明

子女教育

1000

一年按12月计算,可扣12000

继续教育

400

一年可扣除4800元,若是进行技能职业教育或者专业技术职业资格教育一年可扣除3600

大病医疗

5000

一年最高抵扣金额为60000

住房贷款利息

1000

一年可扣除12000元,若夫妻双方在同一城市工作,可以选择一方来扣除

住房租金

1500/1000/800

扣除金额需要根据城市而定

赡养老人

2000

一年可扣除24000元,若不是独生子女,子女平均扣除.赡养老人年龄需要在60周岁及以上

老李本人为独生子女,家里有70岁的老人需要赡养,有一个女儿正读高三,他每月还需缴纳住房贷款2734.201911月老李工资,薪金所得为20000元,按照《个人所得税税前专项附加扣税暂行办法》,则老李应缴纳税款(预扣)为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且

)求数列的通项公式;

)若数列满足,求数列的通项公式;

)在()的条件下,设,问是否存在实数使得数列是单调递增数列?若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案