精英家教网 > 高中数学 > 题目详情

【题目】已知平面向量,满足,若对每一个确定的向量,记的最小值为,则当变化时,的最大值为(

A.B.C.D.1

【答案】B

【解析】

根据题意,建立平面直角坐标系..中点.即可求得点的轨迹方程.变形,结合及平面向量基本定理可知三点共线.由圆切线的性质可知的最小值即为到直线的距离最小值,且当与圆相切时,有最大值.利用圆的切线性质及点到直线距离公式即可求得直线方程,进而求得原点到直线的距离,即为的最大值.

根据题意,,

代入可得

点的轨迹方程为

又因为,变形可得,,

所以由平面向量基本定理可知三点共线,如下图所示:

所以的最小值即为到直线的距离最小值

根据圆的切线性质可知,与圆相切时,有最大值

设切线的方程为,化简可得

由切线性质及点到直线距离公式可得,化简可得

所以切线方程为

所以当变化时, 到直线的最大值为

的最大值为

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,底面ABCD是一个菱形,三角形PAD是一个等腰三角形,∠BAD=∠PAD=,点E在线段PC上,且PE=3EC.

(1)求证:AD⊥PB;

(2)若平面PAD⊥平面ABCD,求二面角E﹣AB﹣P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛掷两颗骰子,计算:

1)事件两颗骰子点数相同的概率;

2)事件点数之和小于7”的概率;

3)事件点数之和等于或大于11”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角ABC所对的边分别为abc,且abc=8.

(1)若a=2,b,求cosC的值;

(2)若sinAcos2+sinB·cos2=2sinC,且△ABC的面积SsinC,求ab的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)判断的奇偶性,并证明;

2)用定义证明函数上单调递减;

3)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若对任意的,都存在,使得,则实数的取值范围是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知矩形的长为2,宽为1 边分别在轴、轴的正半轴上, 点与坐标原点重合,将矩形折叠,使点落在线段上,设此点为.

(1)若折痕的斜率为-1,求折痕所在的直线的方程;

(2)若折痕所在直线的斜率为,( 为常数),试用表示点的坐标,并求折痕所在的直线的方程;

(3)当时,求折痕长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《数书九章》是中国南宋时期杰出数学家秦九韶的著作,其中在卷五“三斜求积”中提出了已知三角形三边,求面积的公式,这与古希腊的海伦公式完全等价,其求法是“以小斜冥并大斜冥减中斜冥,余半之,自乘于上,以小斜冥乘大斜冥减上,余四约之,为实.一为从隅,开平方得积”若把以上这段文字写出公式,即若,则

(1)已知的三边,且,求证:的面积

(2)若,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,方程为不相等的两个正数)所代表的曲线是( )

A. 三角形 B. 正方形 C. 非正方形的长方形 D. 非正方形的菱形

查看答案和解析>>

同步练习册答案