分析 (1)由已知及正弦定理得:sinA=2sinAcosB,又0<A<π.可求cosB=$\frac{1}{2}$,结合范围0<B<π,即可求B的值.
(2)由已知及余弦定理可求ac=4,联立a+c=4,从而解得a,c的值.
解答 解:(1)在△ABC中,由2acosB=bcosC+ccosB,及正弦定理得:sinBcosC+sinCcosB=2sinAcosB,
即sin(B+C)=2sinAcosB,
又A+B+C=π,所以sin(B+C)=sinA,
从而sinA=2sinAcosB,又0<A<π.
故cosB=$\frac{1}{2}$,
又0<B<π,
所以B=$\frac{π}{3}$.
(2)∵b=2,B=$\frac{π}{3}$,a+c=4①,
∴由余弦定理b2=a2+c2-2accosB,可得:4=a2+c2-ac=(a+c)2-3ac=16-3ac,可得:ac=4②,
∴①②联立解得:a=c=2.
点评 本题主要考查了正弦定理,余弦定理,三角形内角和定理,两角和的正弦函数公式的综合应用,考查了转化思想,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 32 | B. | 56 | C. | 63 | D. | 21 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $30(\sqrt{3}-1)m$ | B. | $60(\sqrt{3}-1)m$ | C. | $90(\sqrt{3}-1)m$ | D. | $120(\sqrt{3}-1)m$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com