精英家教网 > 高中数学 > 题目详情

如图所示在多面体ABCDEF中,已知ABCD是边长为1的正方体,且△ADE、△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为

[  ]

A.
B.
C.
D.
答案:A
解析:

如图所示分别过ABEF的垂线,垂足分别为GHDGCH


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在如图所示的多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,G为AD中点.
(1)请在线段CE上找到点F的位置,使得恰有直线BF∥平面ACD,并证明这一事实;
(2)求平面BCE与平面ACD所成锐二面角的大小;
(3)求点G到平面BCE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的多面体中,已知正方形ABCD和直角梯形ACEF所在的平面互相垂直,BC⊥AC,EF∥AC,AB=
2
,EF=EC=1.
(1)求证:AF∥平面BDE;
(2)求证:DF⊥平面BEF;
(3)求二面角A-BF-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,G为AD中点.
(1)请在线段CE上找到点F的位置,使得恰有直线BF∥平面ACD,并证明这一事实;
(2)求平面BCE与平面ACD所成锐二面角的大小;
(3)求点G到平面BCE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,且AC=AD=CD=DE=2,AB=1.
(1)请在线段CE上找到点F的位置,使得恰有直线BF∥平面ACD,并证明这一事实;
(2)求多面体ABCDE的体积;
(3)求直线EC与平面ABED所成角的正弦值.

查看答案和解析>>

同步练习册答案