精英家教网 > 高中数学 > 题目详情
若用反证法证明“若a>b,则a3>b3”,假设内容应是(  )
分析:用反证法证明数学命题时,应先假设要证命题的否定成立,求得命题:“a3>b3”的否定,可得结论.
解答:解:用反证法证明数学命题时,应先假设要证命题的否定成立,而命题:“a3>b3”的否定为:“a3<b3或a3=b3”,
故先D.
点评:本题主要考查用反证法证明数学命题的方法和步骤,求一个命题的否定,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

用反证法证明命题“若a,b,c都是正数,则a+
1
b
,b+
1
c
,c+
1
a
三数中至少有一个不小于2”,提出的假设是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

用反证法证明命题“若a、b∈N,ab能被2整除,则a,b中至少有一个能被2整除”,那么反设的内容是
a、b都不能被2整除
a、b都不能被2整除

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)求证:a5+b5≥a2b3+a3b2,(a,b∈R+);
(2)用反证法证明:若a,b,c均为实数,且a=x2-2y+
π
2
b=y2-2z+
π
3
c=z2-2x+
π
6
,求证a,b,c中至少有一个大于0.

查看答案和解析>>

科目:高中数学 来源: 题型:

用反证法证明.若a、b、c均为实数,且a=x2-2y+
π
2
,b=y2-2z+
π
3
,c=z2-2x+
π
6
,求证:a、b、c中至少有一个大于0.

查看答案和解析>>

科目:高中数学 来源: 题型:

用反证法证明:“若a,b两数之积为0,则a,b至少有一个为0”,应假设(  )

查看答案和解析>>

同步练习册答案