精英家教网 > 高中数学 > 题目详情

已知某海滨浴场的海浪高度y(米)是时间t(0≤t≤24,单位:小时)的函数,记作y=f(t).下表是某日各时的浪高数据:

经长期观测,y=f(t)的曲线可近似地看成是函数y=Acosωt+b.

(1)根据以上数据,求出函数y=Acosωt+b的最小正周期T、振幅A及函数表达式;

(2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放.请依据(1)的结论,判断一天内的上午8∶00至晚上20∶00之间,有多少时间可供冲浪者进行运动?

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知某海滨浴场的海浪高度y(m)是时间t(0≤t≤24,单位:h)的函数,记作y=f(t),下表是某日各时的浪高数据:
t/时 0 3 6 9 12 15 18 21 24
y/米 1.5 1.0 0.5 1.0 1.5 1.0 0.5 0.99 1.5
经长期观测,y=f(t)的曲线可近似地看成是函数y=Acosωt+b.
(1)求函数y=Acosωt+b的最小正周期T,振幅A及函数表达式.
(2)依据规定:当海浪高度高于1m时才对冲浪爱好者开放,请依据(1)的结论,一天内的上午8:00时至晚上20:00时之间,有多少时间可供冲浪者进行运动.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某海滨浴场的海浪高度y(单位:米)与时间 t(0≤t≤24)(单位:时)的函数关系记作y=f(t),下表是某日各时的浪高数据:
t/时 0 3 6 9 12 15 18 21 24
y/米 1.5 1.0 0.5 1.0 1.5 1.0 0.5 0.99 1.5
经长期观测,函数y=f(t)可近似地看成是函数y=Acosωt+b.
(1)根据以上数据,求出函数y=Acosωt+b的最小正周期T及函数表达 式(其中A>0,ω>0);
(2)根据规定,当海浪高度不低于0.75米时,才对冲浪爱好者开放,请根据以上结论,判断一天内从上午7时至晚上19时之间,该浴场有多少时间可向冲浪爱好者开放?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某海滨浴场的海浪高度y(m)是时间t(0≤t≤24,单位:小时)的函数,记作y=f(t).表是某日各时的浪高数据:
t 0 3 6 9 12 15 18 21 24
y 1.5 1.0 0.5 1.0 1.5 1.0 0.5 0.99 1.5
经长期观察,y=f(t)的曲线可近似地看成是函数y=Asin(ωt+
π
2
)+b的图象.
(1)根据以上数据,求出函数y=Asin(ωt+
π
2
)+b的最小正周期T,振幅A及函数表达式;
(2)依据规定,当海浪高度高于1m时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8:00到晚上20:00;之间,有多少时间可供冲浪者进行活动?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某海滨浴场的海浪高度y(单位:米)与时间t(0≤t≤24)(单位:时)的函数关系记作y=f(t),下表是某日各时的浪高数据:

t(时)

0

3

6

9

12

15

18

21

24

y(米)

1.5

1.0

0.5

1.0

1.5

1.0

0.5

0.99

1.5

经长期观测,函数y=f(t)可近似地看成是函数

(1)根据以上数据,求出函数的最小正周期T及函数表达式(其中A>0,ω>0);

(2)根据规定,当海浪高度不低于0.75米时,才对冲浪爱好者开放,请根据以上结论,判断一天内从上午7时至晚上19时之间,该浴场有多少时间可向冲浪爱好者开放

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某海滨浴场的海浪高度(单位:米)与时间 (单位:时)的函数关系记作,下表是某日各时的浪高数据:

/时

0

3

6

9

12

15

18

21

24

/米

1.5

1.0

0.5

1.0

1.5

1.0

0.5

0.99

1.5

经长期观测,函数可近似地看成是函数

(1)根据以上数据,求出函数的最小正周期T及函数表达 式(其中);

(2)根据规定,当海浪高度不低于0.75米时,才对冲浪爱好者开放,请根据以上结论,判断一天内从上午7时至晚上19时之间,该浴场有多少时间可向冲浪爱好者开放?

查看答案和解析>>

同步练习册答案