精英家教网 > 高中数学 > 题目详情

数列的前n项和为,

(I)证明:数列是等比数列;

(Ⅱ)若,数列的前n项和为,求不超过的最大整数的值.

 

【答案】

(1) (2)定义域为 (3) 在上单调递增, 上单调递增

【解析】

试题分析:(1)因为看到我们容易想到利用求解.但要注意当的时候.(2),再利用裂项相消求和解不等式求解.

试题解析:(Ⅰ) 因为,

所以   ① 当时,,则.

② 当时,.

所以,即,

,所以数列是首项为,公比为的等比数列,

所以         6分

(Ⅱ) 由(Ⅰ)知  

 ,

,

故不超过的最大整数为.       12分

考点:数列求通项、数列求和

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知:有穷数列{an}共有2k项(整数k≥2 ),a1=2,设该数列的前n项和为Sn且满足Sn+1=aSn+2(n=1,2,…,2k-1),a>1.
(1)求{an}的通项公式.
(2)设bn=log2an,求{bn}的前n项和Tn
(3)设cn=
Tn
n
,若a=2,求满足不等式|c1-
3
2
|+|c2-
3
2
|+…+|c2k-1-
3
2
|+|c2k-
3
2
|
36
11
时k的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}是一个无穷数列,记Tn=
n+2i=1
2i-1ai+2a1-a3-2n+2an+1
,n∈N*
(1)若{an}是等差数列,证明:对于任意的n∈N*,Tn=0;
(2)对任意的n∈N*,若Tn=0,证明:an是等差数列;
(3)若Tn=0,且a1=0,a2=1,数列bn满足bn=2an,由bn构成一个新数列3,b2,b3,…,设这个新数列的前n项和为Sn,若Sn可以写成ab,(a,b∈N,a>1,b>1),则称Sn为“好和”.问S1,S2,S3,…,中是否存在“好和”,若存在,求出所有“好和”;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公差不为0的等差数列{an}的首项a1为a(a∈R)设数列的前n项和为Sn,且
1
a1
1
a2
1
a4
成等比数列.
(Ⅰ)求数列{an}的通项公式及Sn
(Ⅱ)记An=
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
,Bn=
1
a1
+
1
a2
+…+
1
a2n-1
,当n≥2时,试比较An与Bn的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的首项为a(a∈R,a≠0).设数列的前n项和为Sn,且对任意正整数n都有
a2n
an
=
4n-1
2n-1

(1)求数列{an}的通项公式及Sn
(2)是否存在正整数n和k,使得Sn,Sn+1,Sn+k成等比数列?若存在,求出n和k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•丰台区二模)已知等差数列{an}的公差d≠0,该数列的前n项和为Sn,且满足S3=a5=a22
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设b1=a1bn+1-bn=2an(n∈N*),求数列{bn}的通项公式.

查看答案和解析>>

同步练习册答案