精英家教网 > 高中数学 > 题目详情

【题目】(本小题满分13分)如图所示的茎叶图记录了甲、乙两组各四名同学的投篮命中次数, 乙组记录中有一个数据模糊,无法确认, 在图中以表示.

)如果乙组同学投篮命中次数的平均数为, 及乙组同学投篮命中次数的方差;

)在()的条件下, 分别从甲、乙两组投篮命中次数低于10次的同学中,各随机选取一名, 记事件A两名同学的投篮命中次数之和为17”, 求事件A发生的概率.

【答案】;(.

【解析】试题分析:()利用平均数公式即可求得x,利用方差的计算公式即可求得方差

)列出这两名同学的投篮命中次数之和为17的所以时间利用古典概型即可求出概率

试题解析:()由题可得

方差

)记甲组投篮命中次数低于10次的同学为,他们的投篮命中次数分别为9,7

记乙组投篮命中次数低于10次的同学,他们的投篮命中次数分别为88,9,由题意

不同的选取方法有6种,

这两名同学的投篮命中次数之和为17”为事件,则中含有2种基本事件

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲参加ABC三个科目的学业水平考试,其考试成绩合格的概率如下表,假设三个科目的考试甲是否成绩合格相互独立.

科目A

科目B

科目C

(I)求甲至少有一个科目考试成绩合格的概率;
(Ⅱ)设甲参加考试成绩合格的科目数量为X , 求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图像是由函数的图像经如下变换得到:先将图像上所有点的纵坐标伸长到原来的2倍横坐标不变,再将所得到的图像向右平移个单位长度.

求函数的解析式,并求其图像的对称轴方程;

已知关于的方程内有两个不同的解

1求实数m的取值范围;

2证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥PABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:

(1)直线PA∥平面DEF;
(2)平面BDE⊥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个容量为M的样本数据,其频率分布表如下

(1)计算a,b的值;

(2)画出频率分布直方图;

(3)用频率分布直方图,求出总体的众数及平均数的估计值.

频率分布表

分组

频数

频率

频率/组距

(10,20]

2

0.10

0.010

(20,30]

3

0.15

0.015

(30,40]

4

0.20

0.020

(40,50]

a

b

0.025

(50,60]

4

0.20

0.020

(60, 70]

2

0.10

0.010

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ) (A>0,ω>0,0<φ<π),其导函数f′(x)的部分图象如图所示,则函数f(x)的解析式为(
A.f(x)=4sin( x+ π)
B.f(x)=4sin( x+
C.f(x)=4sin( x+
D.f(x)=4sin( x+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的一段图象如图所示:将的图象向右平移)个单位,可得到函数的图象,且图象关于原点对称.(1)求的值.

(2)求 的最小值,并写出的表达式.

(3)t>0,关于x的函数在区间上最小值为-2,求t的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn . 若Sn=2an﹣n,则 + + + =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)我们把一系列向量按次序排成一列,称之为向量列,记作,已知向量列满足:

(1)证明:数列是等比数列;

(2)设表示向量间的夹角,若,对于任意正整数,不等式恒成立,求实数的范围

(3)设,问数列中是否存在最小项?若存在,求出最小项;若不存在,请说明理由

查看答案和解析>>

同步练习册答案