【题目】已知函数f(x)=x2+2ax+2,x∈[﹣5,5].
(1)当a=﹣1时,求函数f(x)的最大值和最小值;
(2)记函数f(x)的最小值为g(a),求g(a)的表达式.
【答案】(1)最大值37,最小值1; (2)g(a)
【解析】
(1)根据对称轴与定义区间位置关系确定最值取法,再代入求值;
(2)根据对称轴与定义区间位置关系分类讨论最小值取法,最后写成分段函数形式.
(1)当a=﹣1时,f(x)=x2﹣2x+2=(x﹣1)2+1,
∴函数f(x)的最大值f(﹣5)=37,最小值f(1)=1;
(2)已知函数f(x)=x2+2ax+2=(x+a)2+2﹣a2
∴函数的图象为开口方向向上的抛物线,对称轴的方程为:x=﹣a
①当﹣5≤a≤5时:f(x)min=f(﹣a)=2﹣a2
②a<﹣5时:f(x)min=f(5)=27+10a
③当a>5时:f(x)min=f(﹣5)=27﹣10a
综上所述:g(a).
科目:高中数学 来源: 题型:
【题目】某企业生产一种产品,质量测试分为:指标不小于90为一等品,不小于80小于90为二等品,小于80为三等品,每件一等品盈利50元,每件二等品盈利30元,每件三等品亏损10元.现对学徒工甲和正式工人乙生产的产品各100件的检测结果统计如下:
根据上表统计得到甲、乙生产产品等级的频率分别估计为他们生产产品等级的概率.
(Ⅰ)求出甲生产三等品的概率;
(Ⅱ)求出乙生产一件产品,盈利不小于30元的概率;
(Ⅲ)若甲、乙一天生产产品分别为30件和40件,估计甲、乙两人一天共为企业创收多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,其离心率,点P为椭圆上的一个动点,面积的最大值为.
(1)求椭圆的标准方程;
(2)若A,B,C,D是椭圆上不重合的四个点,AC与BD相交于点,,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:
0 | |||||
0 | 2 | 0 | 0 |
(1)请将上表数据补充完整;函数的解析式为= (直接写出结果即可);
(2)求函数的单调递增区间;
(3)求函数在区间上的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(是非零实常数)满足,且关于的方程的解集中恰有一个元素.
(1)求的值;
(2)在直角坐标系中,求定点到函数图像上任意一点的距离的最小值;
(3)当时,不等式恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.
(Ⅰ)证明: BC1//平面A1CD;
(Ⅱ)设AA1= AC=CB=2,AB=2,求三棱锥C一A1DE的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】箱子中有形状、大小都相同的3只红球,2只白球,从中一次摸出2只球.
(1)求摸到的2只球颜色不同的概率:
(2)求摸到的2只球中至少有1只红球的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com