精英家教网 > 高中数学 > 题目详情

【题目】已知函数fx)=x2+2ax+2x[55]

1)当a=﹣1时,求函数fx)的最大值和最小值;

(2)记函数fx)的最小值为ga),求ga)的表达式.

【答案】(1)最大值37,最小值1 (2)ga

【解析】

1)根据对称轴与定义区间位置关系确定最值取法,再代入求值;

2)根据对称轴与定义区间位置关系分类讨论最小值取法,最后写成分段函数形式.

1)当a=﹣1时,fx)=x22x+2=(x12+1

∴函数fx)的最大值f(﹣5)=37,最小值f1)=1

(2)已知函数fx)=x2+2ax+2=(x+a2+2a2

∴函数的图象为开口方向向上的抛物线,对称轴的方程为:x=﹣a

①当﹣5≤a≤5时:fxminf(﹣a)=2a2

a<﹣5时:fxminf5)=27+10a

③当a5时:fxminf(﹣5)=2710a

综上所述:ga.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数是定义在上的增函数,实数使得对于任意都成立,则实数的取值范围是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产一种产品,质量测试分为:指标不小于90为一等品,不小于80小于90为二等品,小于80为三等品,每件一等品盈利50元,每件二等品盈利30元,每件三等品亏损10元.现对学徒工甲和正式工人乙生产的产品各100件的检测结果统计如下:

根据上表统计得到甲、乙生产产品等级的频率分别估计为他们生产产品等级的概率.

(Ⅰ)求出甲生产三等品的概率;

(Ⅱ)求出乙生产一件产品,盈利不小于30元的概率;

(Ⅲ)若甲、乙一天生产产品分别为30件和40件,估计甲、乙两人一天共为企业创收多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,其离心率,点P为椭圆上的一个动点,面积的最大值为.

1)求椭圆的标准方程;

2)若A,B,C,D是椭圆上不重合的四个点,ACBD相交于点,的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:

0

0

2

0

0

(1)请将上表数据补充完整;函数的解析式为= (直接写出结果即可);

(2)求函数的单调递增区间;

(3)求函数在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是非零实常数)满足,且关于的方程的解集中恰有一个元素.

1)求的值;

2)在直角坐标系中,求定点到函数图像上任意一点的距离的最小值;

3)当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱ABC-A1B1C1中,D,E分别是ABBB1的中点.

)证明: BC1//平面A1CD;

)设AA1= AC=CB=2AB=2,求三棱锥CA1DE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(I)若,求函数的单调区间;

(Ⅱ)若存在极小值点,且,其中,求证:

(Ⅲ)试问过点可作多少条直线与的图像相切?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】箱子中有形状、大小都相同的3只红球,2只白球,从中一次摸出2只球.

1)求摸到的2只球颜色不同的概率:

2)求摸到的2只球中至少有1只红球的概率.

查看答案和解析>>

同步练习册答案