精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,曲线的参数方程为为参数,).在以坐标原点为极点轴正半轴为极轴的极坐标系中,曲线

(1)说明是哪一种曲线,并将的方程化为极坐标方程;

(2)直线的极坐标方程为,其中满足,若曲线的公共点都在 上,求.

【答案】(1) ρ2-2ρsin θ+1-a2=0.(2) a=1.

【解析】

(1)根据三角函数平方关系消参数得C1的普通方程,再根据xρcos θyρsin θ化为极坐标方程,(2)联立极坐标方程解得16cos2θ-8sin θcos θ+1-a2=0,再根据tan θ=2化简得1-a2=0,解得a=1.

(1)消去参数t得到C1的普通方程为x2+(y-1)2a2,则C1是以(0,1)为圆心,a为半径的圆.

xρcos θyρsin θ代入C1的普通方程中,得到C1的极坐标方程为ρ2-2ρsin θ+1-a2=0.

(2)曲线C1C2的公共点的极坐标满足方程组ρ≠0,由方程组得16cos2θ-8sin θcos θ+1-a2=0,由已知tan θ=2,得16cos2θ-8sin θcos θ=0,从而1-a2=0,解得a=-1(舍去)a=1.a=1时,极点也为C1C2的公共点,且在C3上.所以a=1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知a,b,c分别是△ABC的内角A,B,C的对边,若△ABC的周长为2(+1),且sin B+sin C=sin A,则a= (  )

A. B. 2 C. 4 D.

【答案】B

【解析】

根据正弦定理把转化为边的关系,进而根据ABC的周长,联立方程组,可求出a的值.

根据正弦定理,可化为

∵△ABC的周长为

联立方程组

解得a=2.

故选:B

【点睛】

(1)在三角形中根据已知条件求未知的边或角时,要灵活选择正弦、余弦定理进行边角之间的转化,以达到求解的目的.

(2)求角的大小时,在得到角的某一个三角函数值后,还要根据角的范围才能确定角的大小,这点容易被忽视,解题时要注意.

型】单选题
束】
7

【题目】已知数列{an}中,an=n2-kn(n∈N*),且{an}单调递增,则k的取值范围是(  )

A. (-∞,2] B. (-∞,2) C. (-∞,3] D. (-∞,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,PA⊥平面ABCD,PB与底面所成的角为45°,底面ABCD为直角梯形,∠ABC=∠BAD=90°,PA=BC=AD=1.问:在棱PD上是否存在一点E,使得CE∥平面PAB?若存在,求出E点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】北京101中学校园内有一个“少年湖”,湖的两侧有一个音乐教室和一个图书馆,如图,若设音乐教室在A处,图书馆在B处,为测量A,B两地之间的距离,某同学选定了与A,B不共线的C处,构成△ABC,以下是测量的数据的不同方案:①测量∠A,AC,BC;②测量∠A,B,BC;③测量∠C,AC,BC;④测量∠AC,B. 其中一定能唯一确定A,B两地之间的距离的所有方案的序号是_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等差数列中,,前项和满足条件

1)求数列的通项公式和

2)记,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥A﹣BCD中,侧棱AB、AC、AD两两垂直,△ABC,△ACD,△ADB的面积分别为 , 则三棱锥A﹣BCD的外接球的体积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求B点在AM上,D点在AN上,且对角线MN过点C,已知AB=2米,AD=1米.

(1)要使矩形AMPN的面积大于9平方米,则DN的长应在什么范围内?

(2)当DN的长度为多少时,矩形花坛AMPN的面积最小?并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:(x-1)2+(y-2)2=2,过点P(2,-1)作圆C的切线,切点为AB.

(1)求直线PAPB的方程;

(2)求过P点的圆C的切线长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某程序框图如图所示,则该程序运行后输出的结果为(

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案