【题目】已知△ABC中,a、b、c分别为角A、B、C所在的对边,且a=4,b+c=5,tanB+tanC+ = tanBtanC,则△ABC的面积为( )
A.
B.3
C.
D.
科目:高中数学 来源: 题型:
【题目】已知菱形ABCD的顶点A,C在椭圆x2+3y2=4上,对角线BD所在直线的斜率为1.
(1)当直线BD过点(0,1)时,求直线AC的方程;
(2)当∠ABC=60°时,求菱形ABCD面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= .
(1)判断函数f(x)在区间(0,1)和[1,+∞)上的单调性(不必证明);
(2)当0<a<b,且f(a)=f(b)时,求 的值;
(3)若存在实数a,b(1<a<b)使得x∈[a,b]时,f(x)的取值范围是[ma,mb](m≠0),求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC= ,O,M分别为AB,VA的中点.
(1)求证:VB∥平面MOC;
(2)求证:平面MOC⊥平面VAB
(3)求三棱锥V﹣ABC的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: +y2=1. (Ⅰ)求椭圆C的长轴和短轴的长,离心率e,左焦点F1;
(Ⅱ)经过椭圆C的左焦点F1作直线l,直线l与椭圆C相交于A,B两点,若|AB|= ,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设A、B分别为双曲线 的左右顶点,双曲线的实轴长为4 ,焦点到渐近线的距离为 .
(1)求双曲线的方程;
(2)已知直线 与双曲线的右支交于M、N两点,且在双曲线的右支上存在点D,使 ,求t的值及点D的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E: =1(a>b>0)的离心率为 ,过焦点垂直与x轴的直线被椭圆E截得的线段长为 .
(1)求椭圆E的方程;
(2)斜率为k的直线l经过原点,与椭圆E相交于不同的两点M,N,判断并说明在椭圆E上是否存在点P,使得△PMN的面积为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y=log2(ax2﹣2x+2)的定义域为Q.
(1)若a>0且[2,3]∩Q=,求实数a的取值范围;
(2)若[2,3]Q,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com