精英家教网 > 高中数学 > 题目详情
9.已知命题p:对?x∈R,均有ax2+ax+1>0恒成立;命题q:双曲线的标准方程是$\frac{{x}^{2}}{1-a}$$+\frac{{y}^{2}}{a-3}$=1,若p∧q为真命题,求实数a的取值范围.

分析 分别求出命题p、q为真时,a的范围,再求交集.

解答 解:命题p真:a=0或$\left\{\begin{array}{l}{a>0}\\{△={a}^{2}-4a<0}\end{array}\right.∴0≤a<4$;
命题q真:(1-a)(a-3)<0,∴a>3或a<1;
p∧q为真命题,则命题p真,命题q真
∴$\left\{\begin{array}{l}{0≤a<4}\\{a>3\\;或a<1}\end{array}\right.$⇒0≤a<1或3<a<4
故实数a的取值范围:[0,1)∪(3,4)

点评 本题考查了含有“且“的复合命题真假的简单应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.三棱锥P-ABC的四个顶点都在体积为$\frac{500π}{3}$的球的表面上,底面ABC所在的小圆面积为16π,则该三棱锥的高的最大值为(  )
A.4B.6C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数$f(x)=|x-a|,g(x)=\frac{2}{x}+1$,若两函数的图象有且只有三个不同的公共点,则实数a的取值范围是(  )
A.(-∞,-2)B.$(1+2\sqrt{2},+∞)$C.$(-∞,-2]∪[1+2\sqrt{2},+∞)$D.$(-∞,-2)∪(1+2\sqrt{2},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,a,b,c分别是A,B,C的对边,且满足bsinA+bcosA=c.
(1)求B;
(2)若角A的平分线与BC相交于D点,AD=AC,BD=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知△ABC中的内角A,B,C所对的边长分比为a,b,c,且a=5,cosB=$\frac{4}{5}$.
(Ⅰ)若b=4,求sinA的值;
(Ⅱ)若△ABC的面积为12,求b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设F1,F2分别是椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,过点F1(-c,0)的直线交椭圆E于A,B两点,若|AF1|=3|F1B|,且AB⊥AF2,则椭圆E的离心率是(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{5}}{3}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=(m2-m-1)x${\;}^{{m}^{2}+m-3}$是幂函数,且当x∈(0,+∞)时f(x)是减函数,则实数m=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数y=$\frac{1}{{\sqrt{{{log}_{0.6}}(4x-3)}}}$的定义域为(  )
A.$(\frac{3}{4},+∞)$B.$(\frac{3}{4},1)$C.(1+∞)D.$(\frac{3}{4},1)∪(1+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,sinB+$\sqrt{2}$sin$\frac{B}{2}$=1-cosB.
(1)求角B的大小;
(2)求sinA+cosC的取值范围.

查看答案和解析>>

同步练习册答案