精英家教网 > 高中数学 > 题目详情

【题目】已知全集UR,集合A={x|0<x≤2},B={x|x<-3x>1}.

:(1)A∩B;(2)(UA)∩(UB);(3)U(A∪B).

【答案】(1);(2);(3)

【解析】

试题分析:由UABUA{x|x≤0x>2}UB{x|3≤x≤1}可得A∪B{x|x<3,或x>0};A∩B{x|1<x≤2}; UAUB)={x|3≤x≤0}; UA∪B)={x|3≤x≤0}

试题解析:因为全集UR,集合A{x|0<x≤2}B{x|x<3x>1},所以 UA{x|x≤0x>2}UB{x|3≤x≤1}A∪B{x|x<3,或x>0}.所以 A∩B{x|1<x≤2}; (UAUB)={x|3≤x≤0}UA∪B)={x|3≤x≤0}

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,长方体ABCDABC′D′中,AB=2 AD=2 AA′=2,

(Ⅰ)求异面直线BC′ 和AD所成的角;

(Ⅱ)求证:直线BC′∥平面ADDA′.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,P是直线x=4上一动点,以P为圆心的圆Γ经定点B(1,0),直线l是圆Γ在点B处的切线,过A(﹣1,0)作圆Γ的两条切线分别与l交于E,F两点.

(1)求证:|EA|+|EB|为定值;

(2)设直线l交直线x=4于点Q,证明:|EB||FQ|=|BF|EQ|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,已知向量 =(2sinA,cos(A﹣B)), =(sinB,﹣1),且 =
(Ⅰ)求角C的大小;
(Ⅱ)若 ,求b﹣a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用另一种形式表示下列集合:

(1){绝对值不大于3的整数};

(2){所有被3整除的数};

(3){x|x=|x|,x∈Zx<5};

(4){x|(3x-5)(x+2)(x2+3)=0,x∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我校对高二600名学生进行了一次知识测试,并从中抽取了部分学生的成绩(满分100)作为样本,绘制了下面尚未完成的频率分布表和频率分布直方图.

(1)填写频率分布表中的空格,补全频率分布直方图,并标出每个小矩形对应的纵轴数据;

分组

频数

频率

[50,60)

2

0.04

[60,70)

8

0.16

[70,80)

10

[80,90)

[90,100]

14

0.28

合计

1.00

如果用分层抽样的方法从样本分数在[60,70)[80,90)的人中共抽取6,再从6人中选2,2人分数都在[80,90)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一装有水的直三棱柱容器(厚度忽略不计),上下底面均为边长为5的正三角形,侧棱为10,侧面水平放置,如图所示,点 分别在棱 上,水面恰好过点 ,且

(1)证明:

(2)若底面水平放置时,求水面的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的不等式|x+1|+|x﹣1|<4的解集为M.
(1)设Z是整数集,求Z∩M;
(2)当a,b∈M时,证明:2|a+b|<|4+ab|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图,图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃,下面叙述不正确的是(  )

A.各月的平均最低气温都在0℃以上
B.七月的平均温差比一月的平均温差大
C.三月和十一月的平均最高气温基本相同
D.平均最高气温高于20℃的月份有5个

查看答案和解析>>

同步练习册答案