分析 (1)任取x1,x2∈[2,+∞),且x1<x2,通过作差比较f(x1)与f(x2)的大小,根据增函数的定义,只需说明f(x1)<f(x2)即可;
(2)根据函数的单调性得到x2-2x+4≤7,求出不等式的解集即可.
解答 (1)证明:任取x1,x2∈[2,+∞),且x1<x2,
则f(x1)-f(x2)=(x1+$\frac{4}{{x}_{1}}$)-(x2+$\frac{4}{{x}_{2}}$)=(x1-x2)+$\frac{4{(x}_{2}{-x}_{1})}{{{x}_{1}x}_{2}}$=$\frac{{(x}_{1}{-x}_{2}){{(x}_{1}x}_{2}-4)}{{{x}_{1}x}_{2}}$,
因为2≤x1<x2,所以x1-x2<0,x1x2>4,
所以f(x1)-f(x2)<0,即f(x1)<f(x2),
所以f(x)=x+$\frac{4}{x}$在[2,+∞)上为增函数.
(2)解:∵x2-2x+4≥2,
结合(1)得f(x)在[2,+∞)递增,
所以x2-2x+4≤7,
解得:-1≤x≤3,
故不等式的解集是[-1,3].
点评 本题考查函数单调性的证明,属基础题,单调性的证明方法主要有:定义法;导数法,要熟练掌握.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ∅ | B. | {1} | C. | {0,1,2} | D. | {2,3} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 3 | B. | -1 | C. | -1或3 | D. | 0 或 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 104人 | B. | 108人 | C. | 112人 | D. | 120人 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com