精英家教网 > 高中数学 > 题目详情
6.在长方体ABCD-A1B1C1D1中,AB=3,AD=2,AA1=4,则A1B与平面A1DCB1所成角的正弦值是$\frac{4\sqrt{5}}{25}$.

分析 以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出A1B与平面A1DCB1所成角的正弦值.

解答 解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
∵在长方体ABCD-A1B1C1D1中,AB=3,AD=2,AA1=4,
∴A1(2,0,4),B(2,3,0),D(0,0,0),C(0,3,0),
$\overrightarrow{{A}_{1}B}$=(0,3,-4),$\overrightarrow{D{A}_{1}}$=(2,0,4),$\overrightarrow{DC}$=(0,3,0),
设平面A1DCB1的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{D{A}_{1}}=2x+4z=0}\\{\overrightarrow{n}•\overrightarrow{DC}=3y=0}\end{array}\right.$,取x=2,得$\overrightarrow{n}$=(2,0,-1),
设 A1B与平面A1DCB1所成角为θ,
则sinθ=|cos<$\overrightarrow{{A}_{1}B},\overrightarrow{n}$>|=|$\frac{\overrightarrow{{A}_{1}B}•\overrightarrow{n}}{|\overrightarrow{{A}_{1}B}|•|\overrightarrow{n}|}$|=|$\frac{4}{5\sqrt{5}}$|=$\frac{4\sqrt{5}}{25}$.
∴A1B与平面A1DCB1所成角的正弦值为$\frac{4\sqrt{5}}{25}$.
故答案为:$\frac{4\sqrt{5}}{25}$.

点评 本题考查线面角的正弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.2015年11月4日,某媒体北京报道:在2013年3月13日曾经报道过京城“菜篮子”,记者在一个菜市场调查,用10元钱可以买3.3斤油麦菜,或者10斤胡萝,或者4根大葱;现在记者又来到菜市场调查,用10元钱买同样的三种蔬菜,可以买3.3斤油麦菜,或者5斤胡萝卜或者10根大葱.记者由此给出结论:现在京城“菜篮子”物价水平与两年前变化不大.
严同学看到上述信息,指出:这样的结论不可靠.
(1)你同意严同学的观点吗?为什么?
(2)如果同意严同学的观点.请你为“某媒体”作出2015年11月4日报道新方案,并对“菜篮子”物价水平变化作出可靠分析.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,O为AD的中点,PA=PD=2,BC=$\frac{1}{2}$AD=1,CD=$\sqrt{3}$,M是棱PC上一点,PA∥平面MOB;
(1)证明:CD⊥平面PAD;
(2)求证:M是棱PC的中点;
(3)求三棱锥M-POB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在几何体ABCD-EFG中,下地面ABCD为正方形,上底面EFG为等腰直角三角形,其中EF⊥FG,且EF∥AD,FG∥AB,AF⊥面ABCD,AB=2FG=2,BE=BD,M是DE的中点.
(1)求证:FM∥平面CEG;
(2)求几何体G-EFC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知圆C与y轴相切,圆心在直线2x-y=0上,且直线x-y=0被圆C截得的弦长为2$\sqrt{2}$.
(1)求圆C的标准方程;
(2)已知两定点A(0,1),B(0,-1),P为圆C上的动点,求|PA|2+|PB|2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(cosx)=cosnx,对任意x∈R.若f(sinx)=cosnx,求正整数n满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.计算:
(1)${({2\frac{7}{9}})^{0.5}}+{0.1^{-2}}+{({2\frac{10}{27}})^{-\frac{2}{3}}}-3{π^0}+\frac{37}{48}$
(2)$lg25+\frac{2}{3}lg8+lg5•lg20+{({lg20})^2}-2lg20$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知直线y=kx与双曲线4x2-y2=16有两个不同公共点,则k的取值范围为(-2,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在区间(10,20]内的所有实数中随机取一个实数a,则这个实数a>17的概率是(  )
A.$\frac{7}{10}$B.$\frac{3}{10}$C.$\frac{1}{3}$D.$\frac{1}{7}$

查看答案和解析>>

同步练习册答案