精英家教网 > 高中数学 > 题目详情
4.已知$f({\frac{a+2b}{3}})=\frac{f(a)+2f(b)}{3}$,f(1)=1,f(4)=7,则f(2016)=(  )
A.4028B.4029C.4030D.4031

分析 由条件令a=4,b=1,得f(2)=3,令a=1,b=4,得f(3)=5,猜想:f(n)=2n-1(n∈N*).再由数学归纳法证明,即可求出f(2016)的值.

解答 解:∵函数f(x)满足对任意实数a,b,有知$f({\frac{a+2b}{3}})=\frac{f(a)+2f(b)}{3}$,
∴由f(1)=1,f(4)=7,
令a=4,b=1,得f(2)=$\frac{f(4)+2f(1)}{3}$=3,
令a=1,b=4,得f(3)=$\frac{f(1)+2f(4)}{3}$=5,
猜想:f(n)=2n-1(n∈N*).①
证明:当n=1,2,3,4时①成立.
假设n≤k(k>4且k为整数),①都成立.
令a=k-2,b=k+1,得f(k)=$\frac{f(k-2)+2f(k+1)}{3}$,
∴f(k+1)=$\frac{1}{2}$[f(k)-f(k-2)]=$\frac{1}{2}$[3(2k-1)-2(k-2)+1]=2(k+1)-1,
即对n=k+1.f(k+1)=2(k+1)-1成立.
∴对任意正整数n,f(n)=2n-1(n∈N*)都成立.
∴f(2016)=2×2016-1=4031.
故选:D.

点评 本题考查抽象函数及运用,考查赋值法的运用,同时考查运用数学归纳法证明与n有关的命题,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.在同一坐标系中,当a>1时,函数 y=($\frac{1}{a}$)x 与 y=logax的图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知全集U={1,2,3,4,5,6,7},A={1,3,5},B={2,4,5,7},则集合∁U(A∪B)为(  )
A.{1,2,3,4,6,7}B.{1,2,5}C.{3,5,7}D.{6}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知f(x)是奇函数,且当x≥0时,f(x)=x(1+x),则f(-2)=(  )
A.-6B.-2C.2D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与直线x+y=1交于P、Q两点,且OP⊥OQ,其中O为坐标原点.椭圆的离心率e满足$\frac{\sqrt{3}}{3}$≤e≤$\frac{\sqrt{2}}{2}$,则椭圆长轴的取值范围是(  )
A.[$\frac{\sqrt{3}}{2}$,1]B.[$\sqrt{3}$,2]C.[$\frac{\sqrt{5}}{2}$,$\frac{\sqrt{6}}{2}$]D.[$\sqrt{5}$,$\sqrt{6}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=|x+a|+|x-2|
(1)当a=-3时,求不等式f(x)≥3的解集;
(2)若f(x)≤|x-4|的解集包含[0,2],求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知命题p:?x∈[0,3],a≥2x-2,命题q:?x∈R,x2+4x+a=0,若命题“p∧q”是真命题,则实数a的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若函数f(x)对定义域中任意x均满足f(x)+f(2a-x)=2b,则函数f(x)的图象关于点(a,b)对称.
(1)已知函数f(x)=$\frac{{{x^2}+mx+m}}{x}$的图象关于点(0,1)对称,求实数m的值;
(2)已知函数g(x)在(-∞,0)∪(0,+∞)上的图象关于点(0,1)对称,且当x∈(0,+∞)时,g(x)=x2+ax+1,求函数g(x)在(-∞,0)上的解析式;
(3)在(1)、(2)的条件下,若对实数x<0及t>0,恒有g(x)<f(t)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)如果${3^{-5x}}>{({\frac{1}{3}})^{x+6}}$,求x的取值范围?
(2)如果loga(2x)>loga(-x+9),求x的取值范围?

查看答案和解析>>

同步练习册答案