精英家教网 > 高中数学 > 题目详情
在△ABC中,角A,B,C对的边分别为a,b,c,且c=2,C=60°.
(1)求
a+bsinA+sinB
的值;
(2)若a+b=ab,求△ABC的面积S△ABC
分析:(1)根据正弦定理求出a=
4
3
3
sinA,b=
4
3
3
sinB
,然后代入所求的式子即可;
(2)由余弦定理求出ab=4,然后根据三角形的面积公式求出答案.
解答:解:(1)由正弦定理可设
a
sinA
=
b
sinB
=
c
sinC
=
2
sin60°
=
2
3
2
=
4
3
3

所以a=
4
3
3
sinA,b=
4
3
3
sinB

所以
a+b
sinA+sinB
=
4
3
3
(sinA+sinB)
sinA+sinB
=
4
3
3
.              …(6分)
(2)由余弦定理得c2=a2+b2-2abcosC,
即4=a2+b2-ab=(a+b)2-3ab,
又a+b=ab,所以(ab)2-3ab-4=0,
解得ab=4或ab=-1(舍去)
所以S△ABC=
1
2
absinC=
1
2
×4×
3
2
=
3
.                   …(14分)
点评:本题考查了正弦定理、余弦定理等知识.在解三角形问题中常涉及正弦定理、余弦定理、三角形面积公式及同角三角函数基本关系等问题,故应综合把握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,则下列关系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D为BC的中点,求△ABC的面积及AD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c并且满足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边的长分别为a,b,c,且a=
5
,b=3,sinC=2sinA
,则sinA=
 

查看答案和解析>>

同步练习册答案