精英家教网 > 高中数学 > 题目详情
在正方形ABCD中,E、F分别为AB、BC的中点,用向量求证:AF⊥DE.
分析:可得
AF
=
AB
+
1
2
AD
DE
=
1
2
AB
-
AD
,故
AF
DE
=
1
2
AB
2
-
1
2
AD
2
-
3
4
AB
AD
=0,可得结论.
解答:解:由题意可得
AF
=
AB
+
BF
=
AB
+
1
2
AD

同理
DE
=
AE
-
AD
=
1
2
AB
-
AD

AF
DE
=(
AB
+
1
2
AD
)(
1
2
AB
-
AD

=
1
2
AB
2
-
1
2
AD
2
-
3
4
AB
AD

设正方形ABCD的边长为a,
由AB⊥AD可知
AB
AD
=0,
故上式=
1
2
a
2
-
1
2
a2
=0,
AF
DE
,AF⊥DE
点评:本题考查数量积判断两个向量的垂直关系,把向量用同一组向量表示是解决问题的关键,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知正方形的边长为1,在正方形ABCD中有两个相切的内切圆.
(1)求这两个内切圆的半径之和;
(2)当这两个圆的半径为何值时,两圆面积之和有最小值?当这两个圆的半径为何值时,两圆面积之和有最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方形ABCD中,M是边BC的中点,N是边CD的中点,设∠MAN=α,那么sinα的值等于
4
5
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方形ABCD中,已知它的边长为1,设
AB
=
a
BC
=
b
AC
=
c
,则|
a
+
b
+
c
|的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•武汉模拟)如图,在正方形ABCD中,点E为CD的中点,点F为BC上靠近点B的一个三等分点,则
EF
=(  )

查看答案和解析>>

同步练习册答案