分析 由条件利用二次函数的性质可得a≥2.故只要f(1)-f(a)≤4 即可,即 (a-1)2≤4,求得a的范围.
解答 解:由于函数f(x)=x2-2ax+5的图象的对称轴为x=a,函数f(x)=x2-2ax+5在区间(-∞,2]上单调递减,∴a≥2.
故在区间∈[1,a+1]上,1离对称轴x=a最远,故要使对任意的x1,x2∈[1,a+1],都有|f(x1)-f(x2)|≤4,
只要f(1)-f(a)≤4 即可,即 (a-1)2≤4,求得-1≤a≤3.
再结合 a≥2,可得2≤a≤3,
故a的取值范围为:[2,3].
点评 本题主要二次函数的性质,绝对值不等式的解法,体现了转化的数学思想,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | f(x)=$\frac{2}{x}$ | B. | f(x)=log2x | C. | f(x)=($\frac{1}{2}$)x | D. | f(x)=-x2+2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 是奇函数而不是偶函数 | B. | 是偶函数而不是奇函数 | ||
C. | 既是奇函数又是偶函数 | D. | 既不是奇函数也不是偶函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
有心理障碍 | 没有心理障碍 | 总计 | |
女生 | 10 | 30 | |
男生 | 70 | 80 | |
总计 | 20 | 110 |
P(X2≥x0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
x0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
有关系 | 无关系 | 不知道 | |
40岁以下 | 800 | 450 | 200 |
40岁以上(含40岁) | 100 | 150 | 300 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com