精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=x2-2ax+5(a>1),若f(x)在区间(-∞,2]上是减函数,且对任意的x1,x2∈[1,a+1],总有|f(x1)-f(x2)|≤4,求a的取值范围.

分析 由条件利用二次函数的性质可得a≥2.故只要f(1)-f(a)≤4 即可,即 (a-1)2≤4,求得a的范围.

解答 解:由于函数f(x)=x2-2ax+5的图象的对称轴为x=a,函数f(x)=x2-2ax+5在区间(-∞,2]上单调递减,∴a≥2.
故在区间∈[1,a+1]上,1离对称轴x=a最远,故要使对任意的x1,x2∈[1,a+1],都有|f(x1)-f(x2)|≤4,
只要f(1)-f(a)≤4 即可,即 (a-1)2≤4,求得-1≤a≤3.
再结合 a≥2,可得2≤a≤3,
故a的取值范围为:[2,3].

点评 本题主要二次函数的性质,绝对值不等式的解法,体现了转化的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.下列函数中,在区间(0,+∞)上是增函数的是(  )
A.f(x)=$\frac{2}{x}$B.f(x)=log2xC.f(x)=($\frac{1}{2}$)xD.f(x)=-x2+2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知随机变量ξ服从正态分布N(2,σ2),P(ξ≤3)=0.64,则P(ξ≤1)等于0.36.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在等比数列{an}中,有a3a11=4a7,数列{bn}是等差数列,且b7=a7,则b5+b9=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数y=f(x),x∈R,f(0)≠0,且满足f(x1)+f(x2)=2f($\frac{{x}_{1}+{x}_{2}}{2}$)f($\frac{{x}_{1}-{x}_{2}}{2}$),则函数f(x)的奇偶性为(  )
A.是奇函数而不是偶函数B.是偶函数而不是奇函数
C.既是奇函数又是偶函数D.既不是奇函数也不是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.对某校小学生进行心理障碍测试得到如下的2×2列联表:
有心理障碍没有心理障碍总计
女生1030
男生7080
总计20110
将表格填写完整,试说明心理障碍与性别是否有关?附:X2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$
P(X2≥x00.150.100.050.0250.010
x02.0722.7063.8415.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某网站体育版足球栏目发起了“射手的连续进球与射手在场上的区域位置的关系”的调查活动,在所有参与调查的人中,持“有关系”“无关系”“不知道”态度的人数如表所示:
  有关系 无关系 不知道
 40岁以下 800 450 200
 40岁以上(含40岁) 100 150 300
(1)在所有参与调查的人中,用分层抽样的方法抽取n个人,已知从持“有关系”态度的人中抽取45人,求n的值;
(2)在持“不知道”态度的人中,用分层抽样的方法抽取10人看作一个总体:
①从这10个人中选取3人,求至少一人在40岁以下的概率;
②从这10人中选取3人,若设40岁以下的人数为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.|$\overrightarrow{a}$|=5,$\overrightarrow{b}$=(3,-4)且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则$\overrightarrow{a}$=(4,3)或(-4,-3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知$\overrightarrow{a}$=(1,0,-1),$\overrightarrow{b}$=(-1,1,2)
①$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$夹角的余弦值为$\frac{5\sqrt{7}}{14}$;
②若k$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-2$\overrightarrow{b}$平行,则k=-$\frac{1}{2}$;
③若k$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$+3$\overrightarrow{b}$垂直,则k=$\frac{15}{7}$.

查看答案和解析>>

同步练习册答案