精英家教网 > 高中数学 > 题目详情
11.已知二次函数f(x)=ax2+bx+2(a,b∈R)
(1)若此二次函数f(x)的最小值为f(-1)=1,求f(x)的解析式,并写出其单调区间;
(2)在(1)的条件下,f(x)>x+m在区间[1,3]上恒成立,试求m的范围.

分析 (1)利用二次函数f(x)的最小值为f(-1)=1,推出对称轴以及函数值,求解ab,得到函数的解析式.找出单调区间.
(2)通过分离变量,得到m的不等式,利用二次函数的最值求解即可.

解答 解:(1)由题意有f(-1)=a-b+2=1,
且-$\frac{b}{2a}$=-1,∴a=1,b=2.
∴f(x)=x2+2x+2,单调减区间为(-∞,-1),单调增区间为(-1,+∞).
(2)f(x)>x+m在区间[1,3]上恒成立,
即为x2+x+2>m在[1,3]上恒成立.
设g(x)=x2+x+2,x∈[1,3],
则g(x)在[1,3]上递增,∴g(x)min=g(1)=4.
∴m<4,即m的取值范围为(-∞,4).

点评 本题考查二次函数的性质的综合应用,函数的最值以及转化思想的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.若抛物线C1:y=$\frac{1}{4}$x2的焦点F到双曲线C2:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线的距离为$\frac{\sqrt{3}}{2}$,抛物线C1上的动点P到双曲线C2的一个焦点的距离与到直线y=-1的距离之和的最小时为$\sqrt{5}$,则双曲线C2的方程为(  )
A.$\frac{{x}^{2}}{3}$-y2=1B.x2-$\frac{{y}^{2}}{3}$=1C.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{2}$=1D.$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{3}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.某市进行一次高三教学质量抽样检测,考试后统计的所有考生的数学成绩服从正态分布.已知数学成绩平均分为90分,60分以下的人数占10%,则数学成绩在90分至120分之间的考生人数所占百分比约为40%.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在锐角△ABC中,内角A,B,C的对边分别为a,b,c,若sin2C-cos2C=$\frac{1}{2}$,则下列各式正确的是(  )
A.a+b=2cB.a+b≤2cC.a+b<2cD.a+b≥2c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,内角A,B,C的对边分别为a,b,c,△ABC的面积为S,且满足$\frac{cosB}{cosC}=-\frac{b}{2a+c}$.
(1)求B的大小;
(2)若a=2,$S=\sqrt{3}$,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列图象是函数y=$\left\{\begin{array}{l}{x^2},x<0\\ x-1,x≥0\end{array}$的图象的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=$\left\{\begin{array}{l}\frac{2}{x},x≥2\\{log_2}x,x<2\end{array}$,若函数y=f(x)-k有两个零点,则实数k的取值范围是(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在正方体ABCD-A1B1C1D1中,有下列命题:①($\overrightarrow{A{A}_{1}}$+$\overrightarrow{AD}$+$\overrightarrow{AB}$)2=3$\overrightarrow{AB}$2;②$\overrightarrow{{A}_{1}C}$•($\overrightarrow{{A}_{1}{B}_{1}}$-$\overrightarrow{{A}_{1}A}$)=0;③$\overrightarrow{A{D}_{1}}$与$\overrightarrow{{A}_{1}B}$的夹角为60°,其中正确命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图1,AD是等腰直角三角形ABC斜边上的高AB=4,沿AD把△ABC的两部分折成直二面角(如图2),P,E,F分别为CD,CA,BA的中点.求证:
(1)AD∥平面BPF;
(2)求四面体BDFE的体积.

查看答案和解析>>

同步练习册答案