精英家教网 > 高中数学 > 题目详情
精英家教网如图,ABCD是一块边长为100m的正方形地皮,其中AST是半径为90m的扇形小山,其余部分都是平地,一开发商想在平地上建一个矩形的停车场,使矩形的一个顶点P在圆弧ST上,相邻两边CQ,CR落在正方形的BC,CD边上,求矩形停车场PQCR面积的最大值与最小值.
分析:先建立直角坐标系,再设P(90cosx,90sinx),然后过P分别BC与CD的垂线,再求出PR,PQ的长度,然后建立面积模型,再按照函数模型求解最值.
解答:精英家教网解:建立如图所示直角坐标系
设P(90cosx,90sinx)
∴PR=100-90sinx,PQ=100-90cosx
∴sPQCR=(100-90sinx)(100-90cosx)
=10000-9000(sinx+cosx)+8100sinxcosx
令sinx+cosx=t∈[1,
2
]
∴sinxcosx=
t2-1
2

∴sPQCR=4050t2-9000t+5950,
∴当t=
10
9
时,取得最小值950
当t=
2
时,取得最大值为:14050-9000
2
点评:本题主要考查函数模型的建立与应用,要注意先建系,再设点,表示相关的量,建立模型,最后解模型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

随着机动车数量的增加,对停车场所的需求越来越大,如图,ABCD是一块边长为100米的正方形地皮,其中ATPS是一座半径为90米的扇形小山,P是弧TS上一点,其余部分都是平地,现一开发商想在平地上建一个边落在BC和CD上的长方形停车场PQCR.
(1)设∠PAB=θ,试写出停车场PQCR的面积S与θ的函数关系式;
(2)求长方形停车场PQCR面积的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,ABCD是一块边长为100米的正方形地皮,其中ATPS是一半径为80米的扇形小山,P是弧TS上一点,其余部分都是平地.现一开发商想在平地上建造一个有边落在BC与CD上的长方形停车场PQCR.设∠PAT为θ,长方形停车场面积为S.
(1)试写出S关于θ的函数;
(2)求长方形停车场面积S的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2004•黄埔区一模)如图,ABCD是一块边长为100米的正方形地皮,其中ATPS是一半径为90米的底面为扇形小山(P为
TS
上的点),其余部分为平地.今有开发商想在平地上建一个边落在BC及CD上的长方形停车场PQCR.求长方形停车场PQCR面积的最大值及最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,ABCD是一块矩形铁板AB=48cm,BC=30cm,剪掉四个阴影部分的小正方形,沿虚线折叠后,焊接成一个无盖的长方体水箱.
(Ⅰ)写出水箱的容积V与水箱高度x的函数表达式,并求其定义域;
(Ⅱ)当水箱高度x为何值时,水箱的容积V最大,并求出其最大值.

查看答案和解析>>

同步练习册答案