【题目】已知圆C经过A(5,3),B(4,4)两点,且圆心在x轴上.
(1)求圆C的标准方程;
(2)若直线l过点(5,2),且被圆C所截得的弦长为6,求直线l的方程.
【答案】(1);(2)或.
【解析】
(1)根据题意可设圆的方程为,根据点在圆上可得关于的方程组,解出方程组即可得到圆的方程.
(2)由直线截圆所得的弦长结合垂径定理可得圆心到直线的距离为4,当直线斜率不存在时显然成立,当直线斜率存在时,可设为点斜式,根据点到直线的距离公式求出斜率即可.
(1)因为圆心在x轴上,所以可设圆的方程为.
因为圆C经过A(5,3),B(4,4)两点,所以
解得,.
故圆C的标准方程是.
(2)因为直线l被圆C所截得的弦长为6,所以圆C的圆心到直线l的距离.
①当直线l的斜率不存在时,因为直线l过点,所以直线l的方程为,所以圆C的圆心到直线l的距离,符合题意;
②当直线l的斜率存在时,可设出直线l的方程为,
即,
则圆C的圆心到直线l的距离,解得,
故直线l的方程为.
综上,直线l的方程为或.
科目:高中数学 来源: 题型:
【题目】(14分)已知a,b为常数,且a≠0,函数f(x)=﹣ax+b+axlnx,f(e)=2(e=2.71828…是自然对数的底数).
(I)求实数b的值;
(II)求函数f(x)的单调区间;
(III)当a=1时,是否同时存在实数m和M(m<M),使得对每一个t∈[m,M],直线y=t与曲线y=f(x)(x∈[,e])都有公共点?若存在,求出最小的实数m和最大的实数M;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在长方中,,,E为的中点,以为折痕,把折起到的位置,且平面平面.
(1)求证:;
(2)在棱上是否存在一点P,使得平面,若存在,求出点P的位置,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com