精英家教网 > 高中数学 > 题目详情

【题目】如图都是边长为1的正方体叠成的几何体,例如第(1)个几何体的表面积为6个平方单位,第(2)个几何体的表面积为18个平方单位,第(3)个几何体的表面积是36个平方单位.依此规律,则第n个几何体的表面积是个平方单位.

【答案】3n(n+1)
【解析】解:结合图形,发现:

第(1)个图形的表面积是1×6=6,

第(2)个图形的表面积是(1+2)×6=18,

第(3)图形的表面积是(1+2+3)×6=36,

第(4)图形的表面积是(1+2+3+4)×6=60,

故第n个图形的表面积是(1+2+3+…+n)×6=3n(n+1)

所以答案是:3n(n+1)

【考点精析】本题主要考查了归纳推理的相关知识点,需要掌握根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax﹣lnx;g(x)=
(1)讨论函数f(x)的单调性;
(2)求证:若a=e(e是自然常数),当x∈[1,e]时,f(x)≥e﹣g(x)恒成立;
(3)若h(x)=x2[1+g(x)],当a>1时,对于x1∈[1,e],x0∈[1,e],使f(x1)=h(x0),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x﹣1)ex﹣kx2+2,k∈R. (Ⅰ) 当k=0时,求f(x)的极值;
(Ⅱ) 若对于任意的x∈[0,+∞),f(x)≥1恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点O为坐标原点,椭圆E: (a≥b>0)的右顶点为A,上顶点为B,过点O且斜率为 的直线与直线AB相交M,且
(Ⅰ)求椭圆E的离心率e;
(Ⅱ)PQ是圆C:(x﹣2)2+(y﹣1)2=5的一条直径,若椭圆E经过P,Q两点,求椭圆E的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中, 的中点,将沿折起,使间的距离为则点到平面的距离为(

A. B. C. 1 D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体ABCDA1B1C1D1中,EF分别是线段A1B1B1C1上的不与端点重合的动点,如果A1EB1F,有下面四个结论:

EFAA1EFACEFAC异面;④EF平面ABCD.

其中一定正确的有(  )

A. ①② B. ②③ C. ②④ D. ①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+ax2+bx+c,x∈[﹣2,2]表示的曲线过原点,且在x=±1处的切线斜率均为﹣1,给出以下结论: ①f(x)的解析式为f(x)=x3﹣4x,x∈[﹣2,2];
②f(x)的极值点有且仅有一个;
③f(x)的最大值与最小值之和等于0.
其中正确的结论有(
A.0个
B.1个
C.2个
D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,∠ABC=45°,∠BAC=90°,AD是BC上的高,沿AD把△ABD折起,使∠BDC=90°.

(1)证明:平面ADB⊥平面BDC;

(2)若BD=1,求三棱锥D-ABC的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国的高铁技术发展迅速,铁道部门计划在两城市之间开通高速列车,假设列车在试运行期间,每天在两个时间段内各发一趟由城开往城的列车(两车发车情况互不影响),城发车时间及概率如下表所示:

发车

时间

概率

若甲、乙两位旅客打算从城到城,他们到达火车站的时间分别是周六的和周日的(只考虑候车时间,不考虑其他因素).

(1)设乙候车所需时间为随机变量(单位:分钟),求的分布列和数学期望

(2)求甲、乙两人候车时间相等的概率.

查看答案和解析>>

同步练习册答案