精英家教网 > 高中数学 > 题目详情
13.设A(2,2,4),B(1,4,6),C(0,1,2),则AB的中点M到C点的距离CM=$\frac{\sqrt{61}}{2}$.

分析 求出AB的中点坐标,然后利用两点间距离公式求解即可.

解答 解:A(2,2,4),B(1,4,6)的中点M($\frac{3}{2}$,3,5),C(0,1,2),
CM=$\sqrt{({\frac{3}{2})}^{2}+(3-1)^{2}+(5-2)^{2}}$=$\frac{\sqrt{61}}{2}$.
故答案为:$\frac{\sqrt{61}}{2}$.

点评 本题考查空间距离公式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{ax}{{e}^{x}}$在x=0处的切线方程为y=x.
(1)求a的值;
(2)若对任意的x∈(0,2),都有f(x)<$\frac{1}{k+2x-{x}^{2}}$成立,求k的取值范围;
(3)若函数g(x)=lnf(x)-b的两个零点为x1,x2,试判断g′($\frac{{x}_{1}+{x}_{2}}{2}$)的正负,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$\overrightarrow{a}$=(sinωx,1),$\overrightarrow{b}$=(1,cosωx),f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$的周期为π,则f(x)的一个对称中心为(  )
A.($\frac{π}{4}$,0)B.(-$\frac{π}{4}$,0)C.($\frac{π}{8}$,0)D.(-$\frac{π}{8}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设等差数列{an}的前n项和为Sn,且a2=8,S4=40.数列{bn}的前n项和为Tn,且Tn-2bn+3=0,n∈N*
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设cn=$\left\{\begin{array}{l}{{a}_{n},n为奇数}\\{{b}_{n},n为偶数}\end{array}\right.$,求数列{cn}的前2n项和P2n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在平面直角坐标系xOy平面中,两个定点A(-1,2),B(1,4),点M在x轴上运动.
(1)若点M在坐标轴上运动,满足MA⊥MB点M的个数为0;
(2)若点M在x轴上运动,当∠AMB最大时的点M坐标为(1,0),(-7,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知△ABC的三个顶点坐标为A(0,0),B(8,4),C(-2,4).
(1)求证:△ABC是直角三角形;
(2)若△ABC的外接圆截直线4x+3y+m=0所得弦的弦长为6,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.甲、乙两人连续6年对农村甲鱼养殖业(产量)进行调查,提供了两个方面的信息,甲调查表明,每个甲鱼池平均出产量从第一年1万只上升到第六年的2万只.
第1年第2年第3年第4年第5年第6年
每池产量1万只1.2万只1.4万只1.6万只1.8万只2万只
乙调查表明,甲鱼池的个数由第一年的30个减少到第6年的10个.
第1年第2年第3年第4年第5年第6年
鱼池个数30个26个22个18个14个10个
(1)求第2年全县产甲鱼的总数;
(2)到第6年这个县甲鱼养殖业的规模比第1年是扩大了还是缩小了?说明理由.
(3)求哪一年的规模最大?说明原因.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数y=$\frac{\sqrt{4-{x}^{2}}}{|2+x|-2}$是(  )
A.偶函数B.奇函数
C.既是奇函数又是偶函数D.既不是奇函数也不是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.cos1740°=$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案