【题目】对于定义域为R的函数y=f(x),部分x与y的对应关系如表:
x | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 |
y | 0 | 2 | 3 | 2 | 0 | ﹣1 | 0 | 2 |
(1)求f{f[f(0)]};
(2)数列{xn}满足x1=2,且对任意n∈N*,点(xn,xn+1)都在函数y=f(x)的图象上,求x1+x2+…+x4n;
(3)若y=f(x)=Asin(ωx+φ)+b,其中A>0,0<ω<π,0<φ<π,0<b<3,求此函数的解析式,并求f(1)+f(2)+…+f(3n)(n∈N*).
【答案】(1)2,(2)4n,(3),当n=2k(k∈N*)时.f(1)+f(2)+…+f(3n)=3n, 当n=2k﹣1(k∈N*)时.f(1)+f(2)+…+f(3n)=3n﹣2
【解析】
(1)根据复合函数的性质,由内往外计算可得答案.
(2)根据点都在函数的图象上,代入,化简,不难发现函数是周期函数,即可求解的值.
(3)根据表中的数据,带入计算即可求解函数的解析式.
(1)根据表中的数据:.
(2)由题意,,点都在函数的图象上,
即,,.
,
………
所以函数是周期为4的周期函数,
故得:.
(3)由表格有
由(1)-(2)得 ,则
又由 ,所以
则,由,所以.
从而 ,则
所以
所以
,又
则
所以
此函数的最小正周期为
则
所以
当时,
.
当时,
科目:高中数学 来源: 题型:
【题目】已知e为自然对数的底数,设函数,则( ).
A. 当k=1时,f(x)在x=1处取到极小值 B. 当k=1时,f(x)在x=1处取到极大值
C. 当k=2时,f(x)在x=1处取到极小值 D. 当k=2时,f(x)在x=1处取到极大值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图①,有一个长方体形状的敞口玻璃容器,底面是边长为20cm的正方形,高为30cm,内有20cm深的溶液.现将此容器倾斜一定角度(图②),且倾斜时底面的一条棱始终在桌面上(图①、②均为容器的纵截面).
(1)要使倾斜后容器内的溶液不会溢出,角的最大值是多少?
(2)现需要倒出不少于的溶液,当时,能实现要求吗?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市对各老旧小区环境整治效果进行满意度测评,共有10000人参加这次测评(满分100分,得分全为整数).为了解本次测评分数情况,从中随机抽取了部分人的测评分数进行统计,整理见下表:
组别 | 分组 | 频数 | 频率 |
1 | 3 | 0.06 | |
2 | 15 | 0.3 | |
3 | 21 | ||
4 | 3 | 0.12 | |
5 | 0.1 | ||
合计 | 1.00 |
(1)求出表中,,的值;
(2)若分数在80(含80分)以上表示对该项目“非常满意”,其中分数在90(含90分)以上表示“十分满意”,现从被抽取的“非常满意“人群中随机抽取2人,求至少有一人分数是“十分满意”的概率;
(3)请你根据样本数据估计全市的平均测评分数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线:的焦点为,点在抛物线上,且满足.
(1)求抛物线的方程;
(2)过抛物线上的任意一点作抛物线的切线,交抛物线的准线于点.在轴上是否存在一个定点,使以为直径的圆恒过.若存在,求出的坐标,若不存在,则说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图甲,AD,BC是等腰梯形CDEF的两条高,,点M是线段AE的中点,将该等腰梯形沿着两条高AD,BC折叠成如图乙所示的四棱锥P-ABCD(E,F重合,记为点P).
甲 乙
(1)求证:;
(2)求点M到平面BDP距离h.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)求函数的定义域,并判断的奇偶性;
(2)如果当时,的值域是,求与的值;
(3)对任意的,,是否存在,使得,若存在,求出;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】松江有轨电车项目正在如火如荼的进行中,通车后将给市民出行带来便利. 已知某条线路通车后,电车的发车时间间隔(单位:分钟)满足. 经市场调研测算,电车载客量与发车时间间隔相关,当时电车为满载状态,载客量为人,当时,载客量会减少,减少的人数与的平方成正比,且发车时间间隔为分钟时的载客量为人.记电车载客量为.
(1)求的表达式,并求当发车时间间隔为分钟时,电车的载客量;
(2)若该线路每分钟的净收益为(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com