精英家教网 > 高中数学 > 题目详情
已知实数x、y满足
x+y-3≥0  
x-y+1≥0  
x≤2  

(1)若z=2x+y,求z的最值;
(2)若z=x2+y2,求z的最值
(3)若z=
y
x
,求z的最值.
分析:先画出约束条件的可行域,根据
(1)z=2x+y即y=-2x+z,z表示直线的纵截距;
(2)z=x2+y2所表示的几何意义:点到原点距离的平方;
(3)z=
y
x
的几何意义是图中阴影部分中的点与原点连线的斜率,分析图形找出满足条件的点,即可得到结论.
解答:解:满足约束条件的可行域
x+y-3≥0  
x-y+1≥0  
x≤2  

如图所示,三角形三个顶点的坐标分别为(2,1),(2,3),(1,2)
(1)z=2x+y即y=-2x+z,z表示直线的纵截距,则z=2x+y在(2,3)处取得最大值为7,在(1,2)处取得最小值为4;
(2)∵z=x2+y2所表示的几何意义为:点到原点距离的平方
由图可得,原点到图中阴影部分中的直线x+y-3=0的距离的平方时,
此时z=x2+y2的最小,最小值为(
|-3|
2
)2
=
9
2
,点(2,3)到原点的距离最大,最大值为13;
(3)z=
y
x
的几何意义是图中阴影部分中的点与原点连线的斜率,在点(2,1)处,斜率取得最小值为
1
2
;在(1,2)处,斜率取得最大值为2.
点评:本题考查线性规划问题,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知实数x,y满足
x2
a2
-
y2
b2
=1(a>0,b>0)
,则下列不等式中恒成立的是(  )
A、|y|<
b
a
x
B、y>-
b
2a
|x|
C、|y|>-
b
a
x
D、y<
2b
a
|x|

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
x-y+2≥0
x+y≥0
x≤1.
则z=2x+4y的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x、y满足
x+2y-2≥0
x≤2
y≤1
z=
|3x+4y-2|
5
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
x≥0
y≥0
x+y≤s
y+2x≤4
,当2≤s≤3时,目标函数z=3x+2y的最大值函数f(s)的最小值为
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湛江一模)已知实数x,y满足
x≥1
y≤2
x-y≤0
,则x2+y2的最小值是(  )

查看答案和解析>>

同步练习册答案