精英家教网 > 高中数学 > 题目详情
定义运算
.
ab
cd
.
=ad-bc、若cosα=
1
7
.
sinαsinβ
cosαcosβ
.
=
3
3
14
,0<β<α<
π
2
,则β等于(  )
A、
π
12
B、
π
6
C、
π
4
D、
π
3
分析:根据新定义化简原式,然后根据两角差的正弦函数公式变形得到sin(α-β)的值,根据0<β<α<
π
2
,利用同角三角函数间的基本关系求出cos(α-β),再根据cosα求出sinα,利用β=[α-(α-β)]两边取正切即可得到tanβ的值,根据特殊角的三角函数值即可求出β.
解答:解:依题设得:
sinα•cosβ-cosα•sinβ=sin(α-β)=
3
3
14

∵0<β<α<
π
2
,∴cos(α-β)=
13
14

又∵cosα=
1
7
,∴sinα=
4
3
7

sinβ=sin[α-(α-β)]=sinα•cos(α-β)-cosα•sin(α-β)
=
4
3
7
×
13
14
-
1
7
×
3
3
14
=
3
2

∴β=
π
3

故选D
点评:此题要求学生会根据新定义化简求值,灵活运用角度的变换解决数学问题.掌握两角和与差的正弦函数公式的运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义运算
.
ab
cd
.
=ad-bc,若复数x=
2-i
3+i
,y=
.
4i3-xi
1+ix+i
.
,则y=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义运算
.
ab
cd
.
=ad-bc
,则符合条件
.
x-11-2y
1+2yx-1
.
=0的点P (x,y)的轨迹方程为(  )
A、(x-1)2+4y2=1
B、(x-1)2-4y2=1
C、(x-1)2+y2=1
D、(x-1)2-y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:

定义运算
.
ab
cd
.
=ad-bc,则函数f(x)=
.
3
3
sinx
1cosx
.
图象的一条对称轴方程是(  )
A、x=
6
B、x=
3
C、x=
π
3
D、x=
π
6

查看答案和解析>>

科目:高中数学 来源: 题型:

定义运算
ab
cd
e
f
=
ae+bf
ce+df
,如
12
03
4
5
=
14
15
,已知α+β=
π
2
,α-β=π,则
sinαcosα
cosαsinα
cosβ
sinβ
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义运算
.
ab
cd
.
=ad-bc,则对复数z=x+yi(x,y∈R)符合条件
.
z1
z2i
.
=3+2i的复数z等于
 

查看答案和解析>>

同步练习册答案