精英家教网 > 高中数学 > 题目详情

【题目】设{an}是首项为a,公差为d的等差数列(d≠0),Sn是其前n项和.记bn= ,n∈N* , 其中c为实数.
(1)若c=0,且b1 , b2 , b4成等比数列,证明:Snk=n2Sk(k,n∈N*);
(2)若{bn}是等差数列,证明:c=0.

【答案】
(1)

证明:若c=0,则an=a1+(n﹣1)d,

当b1,b2,b4成等比数列时,则

即: ,得:d2=2ad,又d≠0,故d=2a.

因此:

故: (k,n∈N*).


(2)

证明:

=

= . ①

若{bn}是等差数列,则{bn}的通项公式是bn=An+B型.

观察①式后一项,分子幂低于分母幂,

故有: ,即 ,而

故c=0.

经检验,当c=0时{bn}是等差数列.


【解析】(1)写出等差数列的通项公式,前n项和公式,由b1 , b2 , b4成等比数列得到首项和公差的关系,代入前n项和公式得到Sn , 在前n项和公式中取n=nk可证结论;
(2)把Sn代入 中整理得到bn= ,由等差数列的通项公式是an=An+B的形式,说明 ,由此可得到c=0.
【考点精析】本题主要考查了等差数列的前n项和公式和等比关系的确定的相关知识点,需要掌握前n项和公式:;等比数列可以通过定义法、中项法、通项公式法、前n项和法进行判断才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是直角梯形,侧棱底面 垂直于为棱上的点,.

(1)若为棱的中点,求证://平面

(2)当时,求平面与平面所成的锐二面角的余弦值;

(3)在第(2)问条件下,设点是线段上的动点,与平面所成的角为,求当取最大值时点的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市举行中学生诗词大赛,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30150]内,其频率分布直方图如图.则获得复赛资格的人数为()

A.640B.520C.280D.240

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的奇函数.当x>0时,f(x)=x2﹣4x,则不等式f(x)>x 的解集用区间表示为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线x轴交于不同的两点AB,曲线Γy轴交于点C

1)是否存在以AB为直径的圆过点C?若存在,求出该圆的方程;若不存在,请说明理由;

2)求证:ABC三点的圆过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数.

(1)求不等式的解集;

(2)若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校研究性学习小组调查学生使用智能手机对学习成绩的影响,部分统计数据如下表:

使用智能手机

不使用智能手机

总计

学习成绩优秀

4

8

12

学习成绩不优秀

16

2

18

总计

20

10

30

(Ⅰ)根据以上列联表判断,能否在犯错误的概率不超过0.005的前提下认为使用智能手机对学习成绩有影响?

(Ⅱ)从学习成绩优秀的12名同学中,随机抽取2名同学,求抽到不使用智能手机的人数的分布列及数学期望.

参考公式:,其中

参考数据:

0.05

0,。025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)设0x,求函数yx32x)的最大值;

2)解关于x的不等式x2-a+1x+a0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示:

(Ⅰ)直方图中x的值为
(Ⅱ)在这些用户中,用电量落在区间[100,250)内的户数为

查看答案和解析>>

同步练习册答案