(本小题满分13分)
已知正方体ABCD-A'B'C'D'的棱长为1,点M是棱AA'的中点,点O是对角线BD'的中点.
(Ⅰ)求证:OM为异面直线AA'和BD'的公垂线;
(Ⅱ)求二面角M-BC'-B'的大小;
(Ⅲ)求三棱锥M-OBC的体积(理科做,文科不做)
本小题主要考查异面直线、直线与平面垂直、二面角、正方体、三棱锥体积等基础知识,并考查空间想象能力和逻辑推理能力,考查应用向量知识解决数学问题的能力。
解法一:(1)连结AC,取AC中点K,则K为BD的中点,连结OK
因为M是棱AA’的中点,点O是BD’的中点
所以AM
所以MO
由AA’⊥AK,得MO⊥AA’
因为AK⊥BD,AK⊥BB’,所以AK⊥平面BDD’B’
所以AK⊥BD’
所以MO⊥BD’
又因为OM是异面直线AA’和BD’都相交
故OM为异面直线AA'和BD'的公垂线
(2)取BB’中点N,连结MN,则MN⊥平面BCC’B’
过点N作NH⊥BC’于H,连结MH
则由三垂线定理得BC’⊥MH
从而,∠MHN为二面角M-BC’-B’的平面角
MN=1,NH=Bnsin45°=
在Rt△MNH中,tan∠MHN=
故二面角M-BC’-B’的大小为arctan2
(3)易知,S△OBC=S△OA’D’,且△OBC和△OA’D’都在平面BCD’A’内
点O到平面MA’D’距离h=
VM-OBC=VM-OA’D’=VO-MA’D’=S△MA’D’h=
解法二:
以点D为坐标原点,建立如图所示空间直角坐标系D-xyz
则A(1,0,0),B(1,1,0),C(0,1,0),A’(1,0,1),C’(0,1,1),D’(0,0,1)
(1)因为点M是棱AA’的中点,点O是BD’的中点
所以M(1,0, ),O(,,)
,=(0,0,1),=(-1,-1,1)
=0, +0=0
所以OM⊥AA’,OM⊥BD’
又因为OM与异面直线AA’和BD’都相交
故OM为异面直线AA'和BD'的公垂线.………………………………4分
(2)设平面BMC'的一个法向量为=(x,y,z)
=(0,-1,), =(-1,0,1)
即
取z=2,则x=2,y=1,从而=(2,1,2)
取平面BC'B'的一个法向量为=(0,1,0)
cos
由图可知,二面角M-BC'-B'的平面角为锐角
故二面角M-BC'-B'的大小为arccos………………………………………………9分
(3)易知,S△OBC=S△BCD'A'=
设平面OBC的一个法向量为=(x1,y1,z1)
=(-1,-1,1), =(-1,0,0)
即
取z1=1,得y1=1,从而=(0,1,1)
点M到平面OBC的距离d=
VM-OBC=…………………………………………12分
科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题
(本小题满分13分)已知函数.
(1)求函数的最小正周期和最大值;
(2)在给出的直角坐标系中,画出函数在区间上的图象.
(3)设0<x<,且方程有两个不同的实数根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题
(本小题满分13分)已知定义域为的函数是奇函数.
(1)求的值;(2)判断函数的单调性;
(3)若对任意的,不等式恒成立,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题
(本小题满分13分)如图,正三棱柱的所有棱长都为2,为的中点。
(Ⅰ)求证:∥平面;
(Ⅱ)求异面直线与所成的角。www.7caiedu.cn
[来源:KS5
U.COM
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题
(本小题满分13分)
已知为锐角,且,函数,数列{}的首项.
(1) 求函数的表达式;
(2)在中,若A=2,,BC=2,求的面积
(3) 求数列的前项和
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com