精英家教网 > 高中数学 > 题目详情
抛物线的顶点在原点,焦点在y轴上,抛物线上一点P(m,-3)到焦点的距离为5,则抛物线的准线方程是( )
A.y=4
B.y=-4
C.y=2
D.y=-2
【答案】分析:根据P抛物线的顶点在原点,焦点在y轴上,可知抛物线开口向下,设抛物线的标准方程,根据抛物线的定义求得p,进而可得到抛物线方程,从而可求抛物线的准线方程.
解答:解:根据抛物线的顶点在原点,焦点在y轴上,可知抛物线开口向下,
设抛物线方程x2=-2py
根据抛物线的定义可知3+=5,
∴p=4;
∴抛物线方程为x2=-8y,
∴抛物线的准线方程是y=2
故选C.
点评:本题以抛物线的性质为载体,考查抛物线的定义,解题的关键是利用定义,将抛物线上点P(m,-3)到焦点的距离转化为点P到准线的距离.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

13、抛物线的顶点在原点,对称轴是坐标轴,且焦点在直线x-y+4=0上,则此抛物线方程为
y2=-16x或x2=16y

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线的顶点在原点,准线方程为x=-2,则抛物线的方程是(  )
A、y2=-8xB、y2=8xC、y2=-4xD、y2=4x

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏一模)本题主要考查抛物线的标准方程、简单的几何性质等基础知识,考查运算求解、推理论证的能力.
如图,在平面直角坐标系xOy,抛物线的顶点在原点,焦点为F(1,0).过抛物线在x轴上方的不同两点A、B,作抛物线的切线AC、BD,与x轴分别交于C、D两点,且AC与BD交于点M,直线AD与直线BC交于点N.
(1)求抛物线的标准方程;
(2)求证:MN⊥x轴;
(3)若直线MN与x轴的交点恰为F(1,0),求证:直线AB过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线的顶点在原点,对称轴是坐标轴,且焦点在直线x-y+2=0上,则此抛物线方程为
y2=-8x或x2=8y
y2=-8x或x2=8y

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网实轴长为4
3
的椭圆的中心在原点,其焦点F1,,F2在x轴上.抛物线的顶点在原点O,对称轴为y轴,两曲线在第一象限内相交于点A,且AF1⊥AF2,△AF1F2的面积为3.
(Ⅰ)求椭圆和抛物线的标准方程;
(Ⅱ)过点A作直线l分别与抛物线和椭圆交于B,C,若
AC
=2
AB
,求直线l的斜率k.

查看答案和解析>>

同步练习册答案