精英家教网 > 高中数学 > 题目详情
已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0),过其左焦点F1作x轴的垂线交双曲线于A、B两点,若双曲线右顶点在以AB为直径的圆内,则双曲线离心离的取值范围为(  )
A、(2,+∞)
B、(1,2)
C、(
3
2
,+∞)
D、(1,
3
2
分析:作出图形如图,由右顶点M在以AB为直径的圆的内部,得|MF|<|AF|,将其转化为关于a、b、c的式子,
再结合平方关系和离心率的公式,化简整理得e2-e-2>0,解之即可得到此双曲线的离心率e的取值范围.
解答:精英家教网解:由于双曲线
x2
a2
-
y2
b2
=1(a>0,b>0),则直线AB方程为:x=-c,其中c=
a2+b2

因此,设A(-c,y0),B(-c,-y0),
c2
a2
-
y02
b2
=1
,解之得y0=
b2
a
,得|AF|=
b2
a

∵双曲线的右顶点M(a,0)在以AB为直径的圆内部
∴|MF|<|AF|,即a+c<
b2
a

将b2=c2-a2,并化简整理,得2a2+ac-c2<0
两边都除以a2,整理得e2-e-2>0,解之得e>2(舍负)
故选:A
点评:本题给出以双曲线通径为直径的圆,当左焦点在此圆内时求双曲线的离心率,着重考查了双曲线的标准方程和简单几何性质等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
7
=1
,直线l过其左焦点F1,交双曲线的左支于A、B两点,且|AB|=4,F2为双曲线的右焦点,△ABF2的周长为20,则此双曲线的离心率e=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1
的一个焦点与抛物线y2=4x的焦点重合,且该双曲线的离心率为
5
,则该双曲线的渐近线方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(b>a>0)
,O为坐标原点,离心率e=2,点M(
5
3
)
在双曲线上.
(1)求双曲线的方程;
(2)若直线l与双曲线交于P,Q两点,且
OP
OQ
=0
.问:
1
|OP|2
+
1
|OQ|2
是否为定值?若是请求出该定值,若不是请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知直线l:kx-y+1+2k=0(k∈R),则该直线过定点
(-2,1)
(-2,1)

(2)已知双曲线
x2
a2
-
y2
b2
=1的一条渐近线方程为y=
4
3
x,则双曲线的离心率为
5
3
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)满足
a1
b
2
 |=0
,且双曲线的右焦点与抛物线y2=4
3
x
的焦点重合,则该双曲线的方程为
 

查看答案和解析>>

同步练习册答案